Thermomechanical processing of advanced high strength steels

Abstract Advanced high strength steels (AHSSs) are regarded as the most promising materials for vehicles in the 21st century. AHSSs are complex and sophisticated materials, with microstructures being controlled by precise thermomechanical processing (TMP) technologies. TMP is an established and strategic method for improving the mechanical properties of AHSSs through control of microstructures and is among the most important industrial technologies for producing high quality AHSSs with the necessary mechanical properties. This article aims to provide a comprehensive review of recent progress in TMP of AHSSs, with focus on the processing-microstructure-property relationships of the processed AHSSs. We first present an introduction to the background of the TMP of AHSSs. Then, the recent progress and the latest achievements in TMP of the first, second and third generations of AHSSs and Nano Hiten steels are reviewed in detail, and the mechanisms of the TMP-induced microstructural evolution and mechanical properties variation are addressed and discussed. The present review concludes with a summary on the TMP of AHSSs currently under development, and also offers an outlook of the future opportunities which will inspire more in-depth research and eventually advance practical applications of this innovative field.

[1]  L. P. Karjalainen,et al.  Enhancement of mechanical properties of a TRIP-aided austenitic stainless steel by controlled reversion annealing , 2015 .

[2]  Seong-Gu Hong,et al.  Development of Ti and Mo micro-alloyed hot-rolled high strength sheet steel by controlling thermomechanical controlled processing schedule , 2013 .

[3]  Y. Bréchet,et al.  Structure–property optimization of ultrafine-grained dual-phase steels using a microstructure-based strain hardening model , 2007 .

[4]  D. Suh,et al.  Microstructure and Tensile Behavior of Duplex Low-Density Steel Containing 5 mass% Aluminum , 2013 .

[5]  A. K. Bhaduri,et al.  Flow behavior and microstructural evolution during hot deformation of AISI Type 316 L(N) austenitic stainless steel , 2011 .

[6]  Seunghee Hong,et al.  Determination of Dynamic Ferrite Transformation During Deformation in Austenite , 2013 .

[7]  Arif Basuki,et al.  Influence of rolling of TRIP steel in the intercritical region on the stability of retained austenite , 1999 .

[8]  P. R. Rios,et al.  Influence of Thermomechanical Parameters on the Competition between Dynamic Recrystallization and Dynamic Strain Induced Transformation in C–Mn and C–Mn–Nb Steels Deformed by Hot Torsion , 2007 .

[9]  Manabu Takahashi,et al.  Plastic Stability of Retained Austenite in the Cold-rolled 0.14%C-1.9%Si-1.7%Mn Sheet Steel , 1995 .

[10]  H. Miura,et al.  Dynamic recrystallization in ultra fine-grained 304 stainless steel , 2000 .

[11]  Sunghak Lee,et al.  Effects of Annealing Temperature on Microstructure and Tensile Properties in Ferritic Lightweight Steels , 2012, Metallurgical and Materials Transactions A.

[12]  E. Palmiere,et al.  Compositional and microstructural changes which attend reheating and grain coarsening in steels containing niobium , 1994 .

[13]  D. Matlock,et al.  Intercritically annealed and isothermally transformed 0.15 Pct C steels containing 1.2 Pct Si-1.5 Pct Mn and 4 Pct Ni: Part I. transformation, microstructure, and room-temperature mechanical properties , 1992 .

[14]  H. K. D. H. Bhadeshia,et al.  Characterisation of severely deformed austenitic stainless steel wire , 2005 .

[15]  Zhi-Gang Yang,et al.  A cyclic austenite reversion treatment for stabilizing austenite in the medium manganese steels , 2017 .

[16]  Y. Adachi,et al.  Crystallography and Mechanical Properties of Ultrafine TRIP-Aided Multi-Phase Steels , 2007 .

[17]  Pierre Simon,et al.  Metallurgical Aspects of Ultra Fast Cooling in front of the Down‐Coiler , 2004 .

[18]  L. Du,et al.  Ultrahigh strength nano/ultrafine-grained 304 stainless steel through three-stage cold rolling and annealing treatment , 2015 .

[19]  N. Haghdadi,et al.  The prediction of hot deformation behavior in Fe–21Mn–2.5Si–1.5Al transformation-twinning induced plasticity steel , 2012 .

[20]  D. Seo,et al.  Formation of Ultrafine Ferrite by Strain-induced Dynamic Transformation in Plain Low Carbon Steel , 2003 .

[21]  L. Dobrzyński,et al.  Hot deformation and recrystallization of advanced high-manganese austenitic TWIP steels , 2011 .

[22]  M. E. Kassner,et al.  Current issues in recrystallization: a review , 1997 .

[23]  Q. Feng,et al.  Effect of Nb on the stability of retained austenite in hot-rolled TRIP steels based on dynamic transformation , 2014 .

[24]  S. Hosseini,et al.  Effect of austenite deformation in non-recrystallization region on microstructure development in low-silicon content TRIP-assisted steels , 2014 .

[25]  H. Dong,et al.  New ultrahigh-strength Mn-alloyed TRIP steels with improved formability manufactured by intercritical annealing , 2015 .

[26]  D. Matlock,et al.  Austenite Stability Effects on Tensile Behavior of Manganese-Enriched-Austenite Transformation-Induced Plasticity Steel , 2011 .

[27]  S. K. Kim,et al.  Orientation dependence of twinning and strain hardening behaviour of a high manganese twinning induced plasticity steel with polycrystalline structure , 2011 .

[28]  A. Odeshi,et al.  A comparative study of the compressive behaviour of AISI 321 austenitic stainless steel under quasi-static and dynamic shock loading , 2016 .

[29]  G. Kelly,et al.  Effect of thermomechanical parameters on the critical strain for ultrafine ferrite formation through hot torsion testing , 2004 .

[30]  D. Raabe,et al.  Dislocation and twin substructure evolution during strain hardening of an Fe-22 wt.% Mn-0.6 wt.% C TWIP steel observed by electron channeling contrast imaging , 2011 .

[31]  B. Rolfe,et al.  Multi-phase microstructure design of a novel high strength TRIP steel through experimental methodology , 2014 .

[32]  Peter Hodgson,et al.  Microstructure and mechanical properties of C–Si–Mn(–Nb) TRIP steels after simulated thermomechanical processing , 2001 .

[33]  C. Servant,et al.  Influence of the increasing content of Mo on the precipitation phenomena occurring during tempering in the maraging alloy Fe-12Mn-9Co-5Mo , 1988 .

[34]  Guo-dong Wang,et al.  Advanced run-out table cooling technology based on ultra fast cooling and laminar cooling in hot strip mill , 2012 .

[35]  Zhengyi Jiang,et al.  Effects of Tungsten Addition on the Microstructure and Mechanical Properties of Microalloyed Forging Steels , 2013, Metallurgical and Materials Transactions A.

[36]  P. Rivera-Díaz-del-Castillo,et al.  A model for the microstructure behaviour and strength evolution in lath martensite , 2015 .

[37]  Po-Yu Chen,et al.  Interphase precipitation of nanometer-sized carbides in a titanium–molybdenum-bearing low-carbon steel , 2011 .

[38]  H. Matsuda,et al.  Application of nanoengineering to research and development and production of high strength steel sheets , 2013 .

[39]  Sarman Singh,et al.  Thermo-mechanical Processing of TRIP-Aided Steels , 2015, Metallurgical and Materials Transactions A.

[40]  A. Hamada,et al.  Manufacturing, mechanical properties and corrosion behaviour of high-Mn TWIP steels , 2007 .

[41]  J. Sietsma,et al.  New low carbon Q&P steels containing film-like intercritical ferrite , 2010 .

[42]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .

[43]  M. Barteri,et al.  Effects of grain size on the properties of a low nickel austenitic stainless steel , 2003 .

[44]  R. Miresmaeili,et al.  First and third generations of advanced high-strength steels in a FeCrNiBSi system , 2016 .

[45]  P. Hodgson,et al.  Hot Deformation and Recrystallization of Austenitic Stainless Steel: Part I. Dynamic Recrystallization , 2008 .

[46]  Wenquan Cao,et al.  Effect of hot rolling temperature on grain size and precipitation hardening in a Ti-microalloyed low-carbon martensitic steel , 2012 .

[47]  Vinod Kumar,et al.  Ferrite Grain Size Distributions in Ultra-Fine-Grained High-Strength Low-Alloy Steel After Controlled Thermomechanical Deformation , 2011 .

[48]  A. Kermanpur,et al.  Nanoindentation study of ferrite–martensite dual phase steels developed by a new thermomechanical processing , 2015 .

[49]  J. D. Boyd,et al.  Effect of Microstructure on Retained Austenite Stability and Tensile Behaviour in an Aluminum-Alloyed TRIP Steel , 2015 .

[50]  Longfei Li,et al.  Hot-Rolled TRIP Steels Based on Dynamic Transformation of Undercooled Austenite , 2010 .

[51]  H. Mirzadeh,et al.  Microstructural Evolutions During Annealing of Plastically Deformed AISI 304 Austenitic Stainless Steel: Martensite Reversion, Grain Refinement, Recrystallization, and Grain Growth , 2016, Metallurgical and Materials Transactions A.

[52]  J. Beynon,et al.  Effect of hot working on dynamic recrystallisation study of as-cast austenitic stainless steel , 2012 .

[53]  R. Kaibyshev,et al.  Strain-induced grain evolution in an austenitic stainless steel under warm multiple forging , 2013 .

[54]  T. Tsuchiyama,et al.  Dual phase structure formed by partial reversion of cold-deformed martensite , 2012 .

[55]  Ying Han,et al.  Deformation behavior and microstructural evolution of as-cast 904L austenitic stainless steel during hot compression , 2013 .

[56]  Y. S. Jin Development of advanced high strength steels for automotive applications , 2010 .

[57]  Olivier Bouaziz,et al.  Modeling of mechanical twinning in a high manganese content austenitic steel , 2004 .

[58]  G. Chin,et al.  Formation of deformation twins in f.c.c. crystals , 1973 .

[59]  J. Szpunar,et al.  Effect of thermo-mechanical processing on texture evolution in austenitic stainless steel 316L , 2014 .

[60]  Jing-bo Yang,et al.  A High-Strength High-Ductility Ti- and Mo-Bearing Ferritic Steel , 2015, Metallurgical and Materials Transactions A.

[61]  Majid Pouranvari,et al.  The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite–martensite dual phase steel sheets , 2009 .

[62]  P. Behjati,et al.  Effect of annealing temperature on nano/ultrafine grain of Ni-free austenitic stainless steel , 2014 .

[63]  Mingxing Zhang,et al.  Hydrogen influence on some advanced high-strength steels , 2017 .

[64]  B. C. De Cooman,et al.  Ultra Fine-Grained 6wt% Manganese TRIP Steel , 2010 .

[65]  Syed H. Masood,et al.  Investigation of die radius arc profile on wear behaviour in sheet metal processing of advanced high strength steels , 2011 .

[66]  J Broughton The British index for comparing the accident record of car models. , 1996, Accident; analysis and prevention.

[67]  O. Bouaziz,et al.  Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel , 2008 .

[68]  F. Forouzan,et al.  Production of nano/submicron grained AISI 304L stainless steel through the martensite reversion process , 2010 .

[69]  Tsuyoshi Shiozaki,et al.  Development of High Strength Hot-rolled Sheet Steel Consisting of Ferrite and Nanometer-sized Carbides , 2004 .

[70]  Jonathan P. Wright,et al.  High-energy X-ray diffraction study on the temperature-dependent mechanical stability of retained austenite in low-alloyed TRIP steels , 2012 .

[71]  Shipu Chen,et al.  The influence of temperature on stacking fault energy in Fe-based alloys , 2001 .

[72]  Sunghak Lee,et al.  Interpretation of Charpy impact energy characteristics by microstructural evolution of dynamically compressed specimens in three tempered martensitic steels , 2016 .

[73]  M. Militzer,et al.  Grain Refinement in Dual-Phase Steels , 2009 .

[74]  C. Chao,et al.  A New Austenitic FeMnAlCrC Alloy with High-Strength, High-Ductility, and Moderate Corrosion Resistance , 2010 .

[75]  D. Raabe,et al.  Carbon partitioning during quenching and partitioning heat treatment accompanied by carbide precipitation , 2015 .

[76]  C. Tasan,et al.  Nanolaminate Transformation-Induced Plasticity-Twinning-Induced Plasticity steel with Dynamic Strain Partitioning and Enhanced damage Resistance , 2015 .

[77]  Zhengyi Jiang,et al.  Effects of tungsten on continuous cooling transformation characteristics of microalloyed steels , 2013 .

[78]  L. Skálová,et al.  Thermo-mechanical processing of low-alloy TRIP-steel , 2006 .

[79]  Dong-Ik Kim,et al.  Effect of aging treatment on microstructure and intrinsic mechanical behavior of Fe–31.4Mn–11.4Al–0.89C lightweight steel , 2016 .

[80]  Z. Fucheng,et al.  High tensile ductility and high strength in ultrafine-grained low-carbon steel , 2010 .

[81]  Sunghak Lee,et al.  Effects of Aluminum Addition on Tensile and Cup Forming Properties of Three Twinning Induced Plasticity Steels , 2012, Metallurgical and Materials Transactions A.

[82]  Zhengyi Jiang,et al.  Effects of Hydrogen on the Critical Conditions for Dynamic Recrystallization of Titanium Alloy During Hot Deformation , 2014, Metallurgical and Materials Transactions A.

[83]  James R. Fekete,et al.  Steels for auto bodies: A general overview , 2017 .

[84]  A. Zarei‐Hanzaki,et al.  An investigation into the room temperature mechanical properties and microstructural evolution of thermomechanically processed TWIP steel , 2014 .

[85]  A. Zarei‐Hanzaki,et al.  Thermomechanical processing effects on C−Mn−Si TRIP steels , 1997 .

[86]  Seong-Gu Hong,et al.  Role of rolling temperature in the precipitation hardening characteristics of Ti–Mo microalloyed hot-rolled high strength steel , 2014 .

[87]  A. Kermanpur,et al.  A novel route for development of ultrahigh strength dual phase steels , 2014 .

[88]  Dong Hyuk Shin,et al.  Ultrafine grained ferrite-martensite dual phase steels fabricated via equal channel angular pressing: Microstructure and tensile properties , 2005 .

[89]  S. Zając,et al.  The Role Of Vanadium In Microalloyed Steels , 1999 .

[90]  H. Clemens,et al.  Mechanical twins, their development and growth , 2003 .

[91]  Zhengyi Jiang,et al.  Effects of tungsten addition and heat treatment conditions on microstructure and mechanical properties of microalloyed forging steels , 2013 .

[92]  G. Gottstein,et al.  The role of twinning during dynamic recrystallization in alloy 800H , 2002 .

[93]  Kyung-Tae Park,et al.  Tensile deformation of a low density Fe–27Mn–12Al–0.8C duplex steel in association with ordered phases at ambient temperature , 2013 .

[94]  H. Riedel,et al.  Twinning Models in Self‐Consistent Texture Simulations of TWIP Steels , 2008 .

[95]  O. Muránsky,et al.  Effect of processing conditions on structure development and mechanical response of Si–Mn ‘TRIP’ steel , 2008 .

[96]  E. Kozeschnik,et al.  Mechanical stabilisation of eutectoid steel , 2007 .

[97]  L. P. Karjalainen,et al.  Effects of reversion and recrystallization on microstructure and mechanical properties of Nb-alloyed low-Ni high-Mn austenitic stainless steels , 2016 .

[98]  R. Misra,et al.  Microstructure-mechanical property relationship and austenite stability in medium-Mn TRIP steels: The effect of austenite-reverted transformation and quenching-tempering treatments , 2017 .

[99]  M. Kusunoki,et al.  Crystallographic study of the tempering of martensitic carbon steel by electron microscopy and diffraction , 1983 .

[100]  K. Sugimoto,et al.  Effects of Nb and Mo Addition to 0.2%C-1.5%Si-1.5%Mn Steel on Mechanical Properties of Hot Rolled TRIP-aided Steel Sheets , 2004 .

[101]  W. Poole,et al.  Formation of Ultrafine Grained Dual Phase Steels through Rapid Heating , 2011 .

[102]  A. Zargaran,et al.  Effects of Nb and C additions on the microstructure and tensile properties of lightweight ferritic Fe–8Al–5Mn alloy , 2014 .

[103]  Seok-Jae Lee,et al.  Mn partitioning during the intercritical annealing of ultrafine-grained 6% Mn transformation-induced plasticity steel , 2011 .

[104]  H. Adrian Thermodynamic model for precipitation of carbonitrides in high strength low alloy steels containing up to three microalloying elements with or without additions of aluminium , 1992 .

[105]  B. C. De Cooman,et al.  The influence of the substitution of Si by Al on the properties of cold rolled C-Mn-Si TRIP steels. , 1999 .

[106]  Tong Yu,et al.  Effects of thermomechanical processing on microstructure and properties of bainitic work hardening steel , 2015 .

[107]  Lei Chen,et al.  Prediction of critical conditions for dynamic recrystallization in 316LN austenitic steel , 2016 .

[108]  Seok-Jae Lee,et al.  Effect of nitrogen on the critical strain for dynamic strain aging in high-manganese twinning-induced plasticity steel , 2011 .

[109]  N. Tsuji,et al.  Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure , 2008 .

[110]  John G. Speer,et al.  Analysis of Microstructure Evolution in Quenching and Partitioning Automotive Sheet Steel , 2011 .

[111]  A. Zarei‐Hanzaki,et al.  Modified constitutive analysis and activation energy evolution of a low-density steel considering the effects of deformation parameters , 2016 .

[112]  S. Ghosh,et al.  Structure and Properties of a Low-Carbon, Microalloyed, Ultra-High-Strength Steel , 2011 .

[113]  C. Liu,et al.  Effects of ceramic particles and composition on elastic modulus of low density steels for automotive applications , 2014 .

[114]  A. Kermanpur,et al.  Effect of martensite to austenite reversion on the formation of nano/submicron grained AISI 301 stainless steel , 2009 .

[115]  Jingwei Zhao,et al.  Work hardening behaviors of a low carbon Nb-microalloyed Si–Mn quenching–partitioning steel with different cooling styles after partitioning , 2013 .

[116]  P. Behjati,et al.  Influence of Nb-Microalloying on the Formation of Nano/Ultrafine-Grained Microstructure and Mechanical Properties During Martensite Reversion Process in a 201-Type Austenitic Stainless Steel , 2015, Metallurgical and Materials Transactions A.

[117]  Lie Zhao,et al.  α′-Martensite formation in deep-drawn Mn-based TWIP steel , 2012, Journal of Materials Science.

[118]  Sunghak Lee,et al.  Novel ferrite-austenite duplex lightweight steel with 77% ductility by transformation induced plasticity and twinning induced plasticity mechanisms , 2014 .

[119]  D. Matlock,et al.  Quenching and partitioning martensite-a novel steel heat treatment , 2006 .

[120]  Longfei Li,et al.  Microstructures and Mechanical Properties of High-Mn TRIP Steel Based on Warm Deformation of Martensite , 2015, Metallurgical and Materials Transactions A.

[121]  B. Hallstedt,et al.  Low-Density Steels: Complex Metallurgy for Automotive Applications , 2014 .

[122]  H. -. Kim,et al.  The role of the constituent phases in determining the low temperature toughness of 5.5Ni cryogenic steel , 1984 .

[123]  O. Matsumura,et al.  Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions , 1991 .

[124]  Peter Hodgson,et al.  The evolution of ultrafine ferrite formation through dynamic strain-induced transformation , 2004 .

[125]  Sunghak Lee,et al.  Correlation of Microstructure and Cracking Phenomenon Occurring during Hot Rolling of Lightweight Steel Plates , 2009 .

[126]  Sunghak Lee,et al.  Effects of intergranular carbide precipitation on delayed fracture behavior in three TWinning Induced Plasticity (TWIP) steels , 2013 .

[127]  S. Mandal,et al.  Kinetics, mechanism and modelling of microstructural evolution during thermomechanical processing of a 15Cr–15Ni–2.2Mo–Ti modified austenitic stainless steel , 2007 .

[128]  Sunghak Lee,et al.  Effects of Annealing Treatment Prior to Cold Rolling on the Edge Cracking Phenomenon of Ferritic Lightweight Steel , 2014, Metallurgical and Materials Transactions A.

[129]  Georg Frommeyer,et al.  Microstructures and Mechanical Properties of High‐Strength Fe‐Mn‐Al‐C Light‐Weight TRIPLEX Steels , 2006 .

[130]  D. Ponge,et al.  Pulsed-laser atom probe studies of a precipitation hardened maraging TRIP steel. , 2011, Ultramicroscopy.

[131]  M. Strangwood,et al.  Development of Bimodal Grain Structures in Nb-Containing High-Strength Low-Alloy Steels during Slab Reheating , 2008 .

[132]  Fucheng Zhang,et al.  Effect of martensitic morphology on mechanical properties of an as-quenched and tempered 25CrMo48V steel , 2012 .

[133]  W. Lei,et al.  Stress-strain response and microstructural evolution of a FeMnCAl TWIP steel during tension-compression tests , 2016 .

[134]  Kang-ying Shu,et al.  Microstructure and Mechanical Properties of Hot-Rolled Fe-Mn-C-Si TWIP Steel , 2011 .

[135]  Di Wu,et al.  Effect of partitioning procedure on microstructure and mechanical properties of a hot-rolled directly quenched and partitioned steel , 2014 .

[136]  Jiecai Han,et al.  Processing maps and hot workability of Super304H austenitic heat-resistant stainless steel , 2009 .

[137]  Y. Matsumura,et al.  Evolution of Ultrafine-grained Ferrite in Hot Successive Deformation , 1987 .

[138]  W. T. Roberts,et al.  Plastic deformation and phase transformation in textured austenitic stainless steel , 1970 .

[139]  C. Haase,et al.  Effect of cold rolling on recrystallization and tensile behavior of a high-Mn steel , 2016 .

[140]  G. Gao,et al.  Tempering Behavior of Ductile 1700 MPa Mn–Si–Cr–C Steel Treated by Quenching and Partitioning Process Incorporating Bainite Formation , 2015 .

[141]  Zhengyi Jiang,et al.  Rolling of Advanced High Strength Steels: Theory, Simulation and Practice , 2017 .

[142]  Sunghak Lee,et al.  Deformation behavior of ferrite–austenite duplex lightweight Fe–Mn–Al–C steel , 2012 .

[143]  X. D. Wang,et al.  Enhancement of the mechanical properties of a Nb-microalloyed advanced high-strength steel treated by quenching–partitioning–tempering process , 2009 .

[144]  C. Liu,et al.  Low-density low-carbon Fe–Al ferritic steels , 2013 .

[145]  J. Yang,et al.  Microstructural characterization and strengthening behavior of nanometer sized carbides in Ti–Mo microalloyed steels during continuous cooling process , 2016 .

[146]  A. Grajcar Hot-working in the γ + α region of TRIP-aided microalloyed steel , 2007 .

[147]  A. K. Bhaduri,et al.  A Study on Microstructural Evolution and Dynamic Recrystallization During Isothermal Deformation of a Ti-Modified Austenitic Stainless Steel , 2011 .

[148]  B. Verlinden,et al.  COMPARISON OF THE EFFECTS OF SILICON AND ALUMINIUM ON THE TENSILE BEHAVIOUR OF MULTIPHASE TRIP-ASSISTED STEELS , 2001 .

[149]  M. Herbig,et al.  Combined atom probe tomography and density functional theory investigation of the Al off-stoichiometry of κ-carbides in an austenitic Fe–Mn–Al–C low density steel , 2016 .

[150]  Liqing Chen,et al.  Some aspects of high manganese twinning-induced plasticity (TWIP) steel, a review , 2013, Acta Metallurgica Sinica (English Letters).

[151]  B. D. Cooman High Mn TWIP steel and medium Mn steel , 2017 .

[152]  D. Ponge,et al.  Nanoprecipitate-hardened 1.5 GPa steels with unexpected high ductility , 2009 .

[153]  J. Sietsma,et al.  Overview of Mechanisms Involved During the Quenching and Partitioning Process in Steels , 2011 .

[154]  Young‐kook Lee,et al.  Coupled strengthening in a medium manganese lightweight steel with an inhomogeneously grained structure of austenite , 2015 .

[155]  I. Tamura,et al.  Thermomechanical Processing of High-Strength Low-Alloy Steels , 2013 .

[156]  R. Misra,et al.  Structure–mechanical property relationship in a high strength low carbon alloy steel processed by two-step intercritical annealing and intercritical tempering , 2014 .

[157]  L. Dobrzański,et al.  Hot-working behaviour of high-manganese austenitic steels , 2008 .

[158]  C. Park,et al.  Effects of aluminum on the microstructure and phase transformation of TRIP steels , 2012, Metals and Materials International.

[159]  O. Bouaziz,et al.  High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships , 2011 .

[160]  H. Dong,et al.  Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels , 2015 .

[161]  S. Venugopal,et al.  A journey with prasad’s processing maps , 2003 .

[162]  L. Dobrzański,et al.  Thermo-mechanical treatment of Fe-Mn-(Al, Si) TRIP/TWIP steels , 2012 .

[163]  Thomas Pardoen,et al.  Influence of martensite volume fraction and hardness on the plastic behavior of dual-phase steels: Experiments and micromechanical modeling , 2016 .

[164]  B. Xie,et al.  Relationships among microstructure, precipitation and mechanical properties in different depths of Ti–Mo low carbon low alloy steel plate , 2016 .

[165]  M. Parsa,et al.  Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect , 2015 .

[166]  Sunghak Lee,et al.  Effect of Strain-Induced Age Hardening on Yield Strength Improvement in Ferrite-Austenite Duplex Lightweight Steels , 2016, Metallurgical and Materials Transactions A.

[167]  J. Yang,et al.  Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides , 2009 .

[168]  Q. Feng,et al.  Microstructure and mechanical properties of C–Mn–Al–Si hot-rolled TRIP steels with and without Nb based on dynamic transformation , 2012 .

[169]  B. Fultz,et al.  The mechanical stability of precipitated austenite in 9Ni steel , 1985 .

[170]  K. Sugimoto,et al.  The role of molybdenum additions to austenitic stainless steels in the inhibition of pitting in acid chloride solutions , 1977 .

[171]  B. Kear,et al.  The dependence of the width of a dissociated dislocation on dislocation velocity , 1968 .

[172]  Martin Pugh,et al.  Properties of thermomechanically processed dual-phase steels containing fibrous martensite , 2002 .

[173]  Mao-qiu Wang,et al.  Effect of microstructural refinement on the toughness of low carbon martensitic steel , 2008 .

[174]  D. Porter,et al.  Ultra-fine grained structure formation through deformation-induced ferrite formation in duplex low-density steel , 2016 .

[175]  M. Koyama,et al.  Work hardening associated with ɛ-martensitic transformation, deformation twinning and dynamic strain aging in Fe–17Mn–0.6C and Fe–17Mn–0.8C TWIP steels , 2011 .

[176]  R. Kaibyshev,et al.  Microstructure and Mechanical Properties of 18%Mn TWIP/TRIP Steels Processed by Warm or Hot Rolling , 2017 .

[177]  David K. Matlock,et al.  Third Generation of AHSS: Microstructure Design Concepts , 2009 .

[178]  Lei Wang,et al.  Novel ultrahigh-strength nanolath martensitic steel by quenching-partitioning-tempering process , 2009 .

[179]  J. Yanagimoto,et al.  Analysis of fracture behavior and stress–strain distribution of martensite/austenite multilayered metallic sheet , 2013 .

[180]  P. Hodgson,et al.  Formation of ultra-fine ferrite in hot rolled strip: potential mechanisms for grain refinement , 2001 .

[181]  A. Samanta,et al.  Spray evaporative cooling to achieve ultra fast cooling in runout table , 2009 .

[182]  J. Yang,et al.  Characterization of interphase-precipitated nanometer-sized carbides in a Ti–Mo-bearing steel , 2009 .

[183]  Wei Zhang,et al.  Constitutive equation and dynamic recrystallization behavior of as-cast 254SMO super-austenitic stainless steel , 2015 .

[184]  H. Abe,et al.  Oxidation behavior of austenitic stainless steels as fuel cladding candidate materials for SCWR in superheated steam , 2014 .

[185]  A. Haldar,et al.  Design and development of precipitate strengthened advanced high strength steel for automotive application , 2013 .

[186]  D. Park,et al.  Strengthening mechanism of hot rolled Ti and Nb microalloyed HSLA steels containing Mo and W with various coiling temperature , 2013 .

[187]  X. Wang,et al.  Mechanism exploration of an ultrahigh strength steel by quenching–partitioning–tempering process , 2011 .

[188]  T. Hanamura,et al.  Effect of Austenite Grain Size on Transformation Behavior, Microstructure and Mechanical Properties of 0.1C–5Mn Martensitic Steel , 2013 .

[189]  D. Fabrègue,et al.  Evolution of microstructure and strength during the ultra-fast tempering of Fe–Mn–C martensitic steels , 2014, Journal of Materials Science.

[190]  S. Ghosh,et al.  Evolution of Microstructure and Mechanical Properties of Thermomechanically Processed Ultrahigh-Strength Steel , 2011 .

[191]  A. K. Bhaduri,et al.  New insights into the relationship between dynamic softening phenomena and efficiency of hot working domains of a nitrogen enhanced 316L(N) stainless steel , 2014 .

[192]  W. M. Rainforth,et al.  Dissolution and precipitation behaviour in steels microalloyed with niobium during thermomechanical processing , 2015 .

[193]  L. P. Karjalainen,et al.  Microstructure evolution in nano/submicron grained AISI 301LN stainless steel , 2010 .

[194]  S. Zwaag,et al.  Stabilization mechanisms of retained austenite in transformation-induced plasticity steel , 2001 .

[195]  Y. Rong,et al.  Grain size dependence of the martensite morphology – A phase-field study , 2016 .

[196]  Shunhu Zhang,et al.  Effects of quenching process on mechanical properties and microstructure of high strength steel , 2012, Journal of Wuhan University of Technology-Mater. Sci. Ed..

[197]  Y. Estrin,et al.  Twinning-induced plasticity (TWIP) steels , 2018 .

[198]  Hardy Mohrbacher,et al.  Martensitic Automotive Steel Sheet - Fundamentals and Metallurgical Optimization Strategies , 2014 .

[199]  G. Krauss,et al.  The tempering of Fe-C lath martensite , 1972 .

[200]  J. M. Rodriguez-Ibabe,et al.  Transition between static and metadynamic recrystallization kinetics in coarse Nb microalloyed austenite , 2003 .

[201]  K. Manabe,et al.  Effect of Intercritical Annealing Time on Microstructure and Axial Mechanical Properties of TRIP Seamless Steel Tube , 2014 .

[202]  R. Misra,et al.  Enhanced stability of retained austenite and consequent work hardening rate through pre-quenching prior to quenching and partitioning in a Q–P microalloyed steel , 2014 .

[203]  H. Cerjak,et al.  Effect of hot plastic deformation of austenite on the transformation characteristics of eutectoid carbon steel under fast heating and cooling conditions , 2007 .

[204]  Influence of Thermo‐Mechanical Processing Parameters and Chemical Composition on Bake Hardening Ability of Hot Rolled Martensitic Steels , 2009 .

[205]  Zhong-min Yang,et al.  Formation of Ultra-fine Grain Structure of Plain Low Carbon Steel through Deformation Induced Ferrite Transformation , 2003 .

[206]  C. Haase,et al.  On the deformation behavior of κ-carbide-free and κ-carbide-containing high-Mn light-weight steel , 2017 .

[207]  O. Bouaziz,et al.  Characterization and modeling of mechanical behavior of quenching and partitioning steels , 2015 .

[208]  Sanjay Kumar,et al.  Effect of cold working on biocompatibility of Ni-free high nitrogen austenitic stainless steels using Dalton's Lymphoma cell line. , 2014, Materials science & engineering. C, Materials for biological applications.

[209]  R. Kaibyshev,et al.  Deformation microstructures and tensile properties of an austenitic stainless steel subjected to multiple warm rolling , 2016 .

[210]  C. Davis,et al.  Effect of deformation and Nb segregation on grain size bimodality in HSLA steel , 2009 .

[211]  F. Delannay,et al.  The Developments of Cold-rolled TRIP-assisted Multiphase Steels. Al-alloyed TRIP-assisted Multiphase Steels , 2001 .

[212]  H. Bhadeshia,et al.  The bainite transformation in a silicon steel , 1979 .

[213]  S. Sankaran,et al.  Development of high strength and ductile ultra fine grained dual phase steel with nano sized carbide precipitates in a V–Nb microalloyed steel , 2013 .

[214]  Wenquan Cao,et al.  Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite , 2010 .

[215]  R. Kaibyshev,et al.  On the effect of chemical composition on yield strength of TWIP steels , 2017 .

[216]  D. Matlock,et al.  Carbon partitioning into austenite after martensite transformation , 2003 .

[217]  Y. M. Zhang,et al.  Transformation to pearlite from austenitized and recrystallized austenite , 1986 .

[218]  M. Fujda,et al.  Structure dependence of the TRIP phenomenon in Si–Mn bulk steel , 2007 .

[219]  M. Militzer Thermomechanical Processed Steels , 2014 .

[220]  L. P. Karjalainen,et al.  The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels , 2007 .

[221]  D. Chakrabarti,et al.  Development of Ultrafine-Grained Dual-Phase Steels: Mechanism of Grain Refinement During Intercritical Deformation , 2013, Metallurgical and Materials Transactions A.

[222]  A. Charaï,et al.  The effects of thermomechanical processing on the precipitation in an industrial dual-phase steel microalloyed with titanium , 2001 .

[223]  B. Bai,et al.  The Properties of 1 500 MPa Grade Alloy Steel with Carbide Free Bainite/Martensite Mixed Microstructures , 2003 .

[224]  Sunghak Lee,et al.  Effect of Carbon Content on Cracking Phenomenon Occurring during Cold Rolling of Three Light-Weight Steel Plates , 2011 .

[225]  D. Dye,et al.  The effect of grain size on the twin initiation stress in a TWIP steel , 2015 .

[226]  S. G. Hong,et al.  Evolution of precipitates in the Nb-Ti-V microalloyed HSLA steels during reheating , 2003 .

[227]  Yang Yu,et al.  Precipitation Strengthening by Nanometer-sized Carbides in Hot-rolled Ferritic Steels , 2014 .

[228]  Wenyue Zheng,et al.  Effect of surface modification on the corrosion resistance of austenitic stainless steel 316L in supercritical water conditions , 2013 .

[229]  T. Hsu,et al.  Design of Structure, Composition and Heat Treatment Process for High Strength Steel , 2007 .

[230]  Longfei Li,et al.  Effect of bainitic transformation temperature on the mechanical behavior of cold-rolled TRIP steels studied with in-situ high-energy X-ray diffraction , 2014 .

[231]  D. Matlock,et al.  The "quenching and partitioning" process: background and recent progress , 2005 .

[232]  Kyung-Tae Park,et al.  Tensile deformation of a duplex Fe–20Mn–9Al–0.6C steel having the reduced specific weight , 2011 .

[233]  Zhengyi Jiang,et al.  Enhancing impact fracture toughness and tensile properties of a microalloyed cast steel by hot forging and post-forging heat treatment processes , 2013 .

[234]  C. Lahaye,et al.  Overview of Lightweight Ferrous Materials: Strategies and Promises , 2014 .

[235]  S. Mazumder,et al.  Precipitation in 18 wt% Ni maraging steel of grade 350 , 2000 .

[236]  P. D. Sudersanan,et al.  The Effect of Carbon Content in Martensite on the Strength of Dual Phase Steel , 2012 .

[237]  A. Schino,et al.  Effects of martensite formation and austenite reversion on grain refining of AISI 304 stainless steel , 2002 .

[238]  M. Asadi,et al.  Influence of martensite volume fraction and cooling rate on the properties of thermomechanically processed dual phase steel , 2012 .

[239]  R. Kuziak,et al.  Designing of cooling conditions for Si-Al microalloyed TRIP steel on the basis of DCCT diagrams , 2011 .

[240]  J. Sietsma,et al.  Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel , 2011 .

[241]  Zhangjian Zhou,et al.  Hot deformation behavior and microstructural evolution of a modified 310 austenitic steel , 2014 .

[242]  Yu Kyung Lee,et al.  Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel , 2012 .

[243]  Hashimoto Shunichi,et al.  Niobium Bearing Ferrite-Bainite High Strength Hot-rolled Sheet Steel with Improved Formability , 1983 .

[244]  Patricia Verleysen,et al.  Advanced high strength steels for automotive industry , 2012 .

[245]  Sunghak Lee,et al.  Novel ultra-high-strength (ferrite + austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization , 2015 .

[246]  D. Chakrabarti,et al.  Comparison Between Different Processing Schedules for the Development of Ultrafine-Grained Dual-Phase Steel , 2014, Metallurgical and Materials Transactions A.

[247]  S. Yue,et al.  Ferrite formation characteristics in Si-Mn TRIP steels , 1997 .

[248]  K. Dehghani,et al.  Hot deformation behavior and microstructural evolution of a superaustenitic stainless steel , 2010 .

[249]  Sunghak Lee,et al.  Effects of aluminum content on cracking phenomenon occurring during cold rolling of three ferrite-based lightweight steel , 2013 .

[250]  M. Naderi,et al.  Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel , 2012 .

[251]  Rongkun Zheng,et al.  Precipitate characterisation of an advanced high-strength low-alloy (HSLA) steel using atom probe tomography , 2007 .

[252]  W. Salvatore,et al.  Dual-phase steel rebars for high-ductile r.c. structures, Part 1: Microstructural and mechanical characterization of steel rebars , 2007 .

[253]  M. Koyama,et al.  Overview of hydrogen embrittlement in high-Mn steels , 2017 .

[254]  Sunghak Lee,et al.  Effect of annealing temperature on microstructural modification and tensile properties in 0.35 C–3.5 Mn–5.8 Al lightweight steel , 2013 .

[255]  Zhaoguang Wang,et al.  Strengthening effect of nanoscale precipitation and transformation induced plasticity in a hot rolled copper-containing ferrite-based lightweight steel , 2017 .

[256]  Longfei Li,et al.  Microstructure and Mechanical Properties of a Low-Carbon Mn-Si Multiphase Steel Based on Dynamic Transformation of Undercooled Austenite , 2013, Metallurgical and Materials Transactions A.

[257]  H. Matsuda,et al.  Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomograp , 2014 .

[258]  O. Matsumura,et al.  Retained austenite in low carbon, manganese steel after intercritical heat treatment , 1994 .

[259]  Ohjoon Kwon,et al.  New Trends in Advanced High Strength Steel Developments for Automotive Application , 2010 .

[260]  A. K. Bhaduri,et al.  Influence of State of Stress on Dynamic Recrystallization in a Titanium-Modified Austenitic Stainless Steel , 2012, Metallurgical and Materials Transactions A.

[261]  Seyed Morteza Sabet,et al.  Effect of thermo-mechanical processing on oxidation of austenitic stainless steel 316L in supercritical water , 2015 .

[262]  S. Mandal,et al.  Hot deformation characteristics and processing map of a phosphorous modified super austenitic stainless steel , 2017 .

[263]  L. A. Dobrzański,et al.  Influence of hot-working conditions on a structure of high-manganese austenitic steels , 2008 .

[264]  Ondrej Muránsky,et al.  In situ neutron diffraction investigation of the collaborative deformation–transformation mechanism in TRIP-assisted steels at room and elevated temperatures , 2008 .

[265]  L. P. Karjalainen,et al.  On the Significance of Nature of Strain-Induced Martensite on Phase-Reversion-Induced Nanograined/Ultrafine-Grained Austenitic Stainless Steel , 2009 .

[266]  Y. Adachi,et al.  Microstructure and cleavage in lath martensitic steels , 2013, Science and technology of advanced materials.

[267]  E. Pereloma,et al.  Formation of ultra-fine ferrite microstructure in warm rolled and annealed C–Mn steel , 2003 .

[268]  W. M. Rainforth,et al.  Thermomechanical processing route to achieve ultrafine grains in low carbon microalloyed steels , 2016 .

[269]  Taherian Reza,et al.  Drawing of CCCT diagrams by static deformation and consideration deformation effect on martensite and bainite transformation in NiCrMoV steel , 2008 .

[270]  J. Inoue,et al.  Fracture elongation of brittle/ductile multilayered steel composites with a strong interface , 2008 .

[271]  R. Kuziak,et al.  Advanced high strength steels for automotive industry , 2008 .

[272]  S. Venugopal,et al.  Processing maps for hot working of commercial grade wrought stainless steel type AISI 304 , 1994 .

[273]  Longfei Li,et al.  Influences of alloying elements on warm deformation behavior of high-Mn TRIP steel with martensitic structure , 2016 .

[274]  J. Kenny,et al.  Grain size dependence of mechanical, corrosion and tribological properties of high nitrogen stainless steels , 2003 .

[275]  D. Ponge,et al.  Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: Example of a 9 wt.% medium Mn steel , 2015 .

[276]  H. Aydin,et al.  Investigation of dual phase transformation of commercial low alloy steels: Effect of holding time at low inter-critical annealing temperatures , 2008 .

[277]  J. C. Herman Impact of new rolling and cooling technologies on thermomechanically processed steels , 2001 .

[278]  M. Ashby Results and consequences of a recalculation of the frank-read and the orowan stress , 1966 .

[279]  Ahmed A. Saleh,et al.  Effect of annealing on the microstructure and mechanical properties of cold rolled Fe–24Mn–3Al–2Si–1Ni–0.06C TWIP steel , 2011 .

[280]  J. Venables Deformation twinning in face-centred cubic metals , 1961 .

[281]  Sunghak Lee,et al.  Effects of Annealing Treatment Prior to Cold Rolling on Delayed Fracture Properties in Ferrite-Austenite Duplex Lightweight Steels , 2016, Metallurgical and Materials Transactions A.

[282]  M. Marcinkowski,et al.  The effect of ordering on the strength and dislocation arrangements in the Ni3Mn superlattice , 1961 .

[283]  D. Chakrabarti,et al.  Development of Bimodal Ferrite-Grain Structures in Low-Carbon Steel Using Rapid Intercritical Annealing , 2013, Metallurgical and Materials Transactions A.

[284]  Young‐kook Lee,et al.  Strain hardening behavior of a Fe―18Mn―0.6C―1.5Al TWIP steel , 2009 .

[285]  Han. Dong,et al.  Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel , 2011 .

[286]  L. P. Karjalainen,et al.  Hall–Petch Behavior in Ultra-Fine-Grained AISI 301LN Stainless Steel , 2007 .

[287]  C. Curfs,et al.  Precipitation strengthening in high manganese austenitic TWIP steels , 2011 .

[288]  T. Tsuchiyama,et al.  Effect of Grain Refinement on Thermal Stability of Metastable Austenitic Steel , 2004 .

[289]  W. Poole,et al.  A novel technique for developing bimodal grain size distributions in low carbon steels , 2007 .

[290]  O. Bouaziz,et al.  Nanostructured steel with high work-hardening by the exploitation of the thermal stability of mechanically induced twins , 2009 .

[291]  O. Matsumura,et al.  Enhancement of Elongation by Retained Austenite in Intercritical Annealed 0.4C-1.5Si-O.8Mn Steel , 1987 .

[292]  W. C. Leslie,et al.  Tempering of steel , 1972, Steels.

[293]  M. Calcagnotto,et al.  On the Effect of Manganese on Grain Size Stability and Hardenability in Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels , 2011, Metallurgical and Materials Transactions A.

[294]  P. Hodgson,et al.  A Descriptive Model for the Formation of Ultrafine Grained Steels , 2008 .

[295]  Seung-Chan Hong,et al.  Influence of deformation induced ferrite transformation on grain refinement of dual phase steel , 2002 .

[296]  Tomoyoshi Maeno,et al.  Improvement in formability by control of temperature in hot stamping of ultra-high strength steel parts , 2014 .

[297]  Chien‐Hsin Wu,et al.  The influence of Cr alloying on microstructures of Fe-Al-Mn-Cr alloys , 2004 .

[298]  H. C. Chen,et al.  Effect of phosphorus on the formation of retained austenite and mechanical properties in Si-containing low-carbon steel sheet , 1989 .

[299]  J. Moon,et al.  Corrosion behavior in high heat input welded heat-affected zone of Ni-free high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel , 2013 .

[300]  K. Tsuzaki,et al.  Effect of initial microstructures on grain refinement in a stainless steel by large strain deformation , 2003 .

[301]  P. Hodgson,et al.  Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation , 2008 .

[302]  L. Du,et al.  Structure–mechanical property relationship in a low-C medium-Mn ultrahigh strength heavy plate steel with austenite-martensite submicro-laminate structure , 2015 .

[303]  E. Pereloma,et al.  Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels , 2004 .

[304]  C. Tasan,et al.  Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels , 2014 .

[305]  J. Jonas,et al.  Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions , 2014 .

[306]  A. Kermanpur,et al.  Effects of initial microstructure and thermomechanical processing parameters on microstructures and mechanical properties of ultrafine grained dual phase steels , 2014 .

[307]  M. Pouranvari TENSILE STRENGTH AND DUCTILITY OF FERRITE-MARTENSITE DUAL PHASE STEELS , 2010 .

[308]  B. C. Cooman,et al.  Temperature dependence of the flow stress of Fe–18Mn–0.6C–xAl twinning-induced plasticity steel , 2013 .

[309]  A. Heuer,et al.  Third Generation 0.3C-4.0Mn Advanced High Strength Steels Through a Dual Stabilization Heat Treatment: Austenite Stabilization Through Paraequilibrium Carbon Partitioning , 2014, Metallurgical and Materials Transactions A.

[310]  M. Umemoto,et al.  Transformation to Pearlite from Work-hardened Austenite , 1984 .

[311]  Dierk Raabe,et al.  Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging , 2011 .

[312]  E. Pereloma,et al.  Three-dimensional atom probe analysis of solute distribution in thermomechanically processed TRIP steels , 2007 .

[313]  D. Raabe,et al.  The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe–Mn–(Al–Si) steels investigated by experiment and theory , 2014 .

[314]  J. McDermid,et al.  Analysis of the Fe–Zn interface of galvanized high Al–low Si TRIP steels , 2008 .

[315]  Olivier Bouaziz,et al.  Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys , 2004 .

[316]  J. McDermid,et al.  Effect of carbon content on the mechanical properties and microstructural evolution of Fe–22Mn–C steels , 2015 .

[317]  Cheng Liu,et al.  Evolution of microstructure and mechanical properties during thermomechanical processing of a low-density multiphase steel for automotive application , 2014 .

[318]  Gregory B Olson,et al.  Kinetics of strain-induced martensitic nucleation , 1975 .

[319]  A. Heuer,et al.  A 3rd Generation Advanced High-Strength Steel (AHSS) Produced by Dual Stabilization Heat Treatment (DSHT) , 2013, Metallurgical and Materials Transactions A.

[320]  M. Wells An electron transmission study of the tempering of martensite in an Fe-Ni-C alloy , 1964 .

[321]  R. Song,et al.  Tensile deformation of low density duplex Fe–Mn–Al–C steel , 2015 .

[322]  Ortrud Kubaschewski,et al.  Iron-binary phase diagrams , 1982 .

[323]  B. C. Cooman,et al.  Phase transformation and mechanical properties of si-free CMnAl transformation-induced plasticity-aided steel , 2002 .

[324]  H. Ding,et al.  Influences of Thermal Martensites and Grain Orientations on Strain-induced Martensites in High Manganese TRIP/TWIP Steels , 2011 .

[325]  M. Calcagnotto,et al.  Microstructure Control during Fabrication of Ultrafine Grained Dual-phase Steel: Characterization an , 2012 .

[326]  L. Du,et al.  The determining role of reversed austenite in enhancing toughness of a novel ultra-low carbon medium manganese high strength steel , 2015 .

[327]  Seok-Jae Lee,et al.  Dissolution and Precipitation Kinetics of Nb(C,N) in Austenite of a Low-Carbon Nb-Microalloyed Steel , 2009 .

[328]  B. Blanpain,et al.  Cold rolling behaviour of an austenitic Fe–30Mn–3Al–3Si TWIP-steel: the importance of deformation twinning , 2004 .

[329]  R. F. Mehl,et al.  Transformation from austenite in alloy steels , 1976 .

[330]  Jinkyung Kim,et al.  High Mn TWIP Steels for Automotive Applications , 2011 .

[331]  L. Kestens,et al.  Effect of fresh martensite on the stability of retained austenite in quenching and partitioning steel , 2014 .

[332]  Raju V. Ramanujan,et al.  Review The relation between the electron to atom ratio and some properties of metallic systems , 2001 .

[333]  S. Takaki,et al.  Optimal Chemical Composition in Fe-Cr-Ni Alloys for Ultra Grain Refining by Reversion from Deformation Induced Martensite. , 1991 .

[334]  A. Kermanpur,et al.  The influence of reversion annealing behavior on the formation of nanograined structure in AISI 201L austenitic stainless steel through martensite treatment , 2011 .

[335]  Singon Kang,et al.  Effects of recrystallization annealing temperature on carbide precipitation, microstructure, and mechanical properties in Fe-18Mn-0.6C-1.5Al TWIP steel , 2010 .

[336]  P. Chattopadhyay,et al.  Influence of martensite morphology on the work-hardening behavior of high strength ferrite–martensite dual-phase steel , 2009 .

[337]  G. Krauss Steels: Processing, Structure, And Performance , 2005 .

[338]  Wang Guo-dong New Generation TMCP and Innovative Hot Rolling Process , 2009 .

[339]  R. Rana Low-Density Steels , 2014, High-Performance Ferrous Alloys.

[340]  W. Mao,et al.  Effect of hot deformation of austenite on martensitic transformation in high manganese steel , 2013 .

[341]  A. Puype Developing of advanced high strength steel via ultrafast annealing , 2014 .

[342]  Sungil Kim,et al.  Dynamic recrystallization behavior of AISI 304 stainless steel , 2001 .

[343]  L. P. Karjalainen,et al.  Enhanced Mechanical Properties through Reversion in Metastable Austenitic Stainless Steels , 2009 .

[344]  D. Barbier,et al.  Characterization and quantification methods of complex BCC matrix microstructures in advanced high strength steels , 2012, Journal of Materials Science.

[345]  Jason D. Rowe,et al.  Advanced materials in automotive engineering , 2012 .

[346]  F. Xiao,et al.  Effect of hot deformation on phase transformation kinetics of 86CrMoV7 steel , 2006 .

[347]  Han Dong,et al.  Deformation induced ferrite transformation in low carbon steels , 2005 .

[348]  Bert Verlinden,et al.  Thermo-Mechanical Processing of Metallic Materials , 2014 .

[349]  H. Fujimura,et al.  Local interactions in carbon-carbon and carbon-M (M: Al, Mn, Ni) atomic pairs in FCC gamma -iron , 1994 .

[350]  P. Hodgson,et al.  Continuous dynamic recrystallization in low density steel , 2017 .

[351]  H. Bhadeshia,et al.  Mechanical stabilisation of bainite , 1995 .

[352]  Z. Sun,et al.  Deformation enhanced transformation and dynamic recrystallization of ferrite in a low carbon steel during multipass hot deformation , 2002 .

[353]  J. Breedis Influence of dislocation substructure on the martensitic transformation in stainless steel , 1965 .

[354]  S. Venugopal,et al.  Influence of cast versus wrought microstructure on the processing map for hot working of stainless steel type AISI 304 , 1993 .

[355]  D. P. Koistinen,et al.  A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels , 1959 .

[356]  S. Serajzadeh,et al.  A study on the microstructural changes in hot rolling of dual-phase steels , 2006 .

[357]  June-Soo Park,et al.  Carbide precipitation kinetics in austenite of a Nb–Ti–V microalloyed steel , 2011 .

[358]  G. H. Daneshi,et al.  Effect of intercritical annealing on retained austenite characterization in textured TRIP-assisted steel sheet , 2006 .

[359]  Seto Kazuhiro,et al.  Hot Rolled High Strength Steels for Suspension and Chassis Parts NANOHITEN and BHT® Steel , 2007 .

[360]  P. Wollants,et al.  Review and prospect of high strength low alloy TRIP steel , 2003 .

[361]  B. Mintz Hot dip galvanising of transformation induced plasticity and other intercritically annealed steels , 2001 .

[362]  D. Raabe,et al.  The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe–Mn–Al–Si steels during tensile deformation , 2015 .

[363]  J. Jonas,et al.  The Ferrite Transformation in Hot Deformed 0.036% Nb Austenite at Temperatures Above the Ae3 , 2010 .

[364]  D. Shin,et al.  Microstructural changes in equal channel angular pressed low carbon steel by static annealing , 2000 .

[365]  Zhengyi Jiang,et al.  Enhancing mechanical properties of a low-carbon microalloyed cast steel by controlled heat treatment , 2013 .

[366]  Xin Sun,et al.  Twinning and martensite in a 304 austenitic stainless steel , 2012 .

[367]  A. Kermanpur,et al.  Formation of Nanocrystalline Structure in 301 Stainless Steel Produced by Martensite Treatment , 2009 .

[368]  K. Ishida,et al.  Effect of Alloying Elements on Stability of Epsilon Iron , 1974 .

[369]  C. Tasan,et al.  Spectral TRIP enables ductile 1.1 GPa martensite , 2016 .

[370]  J. Yang,et al.  Interactions between deformation-induced defects and carbides in a vanadium-containing TWIP steel , 2012 .

[371]  Shulan Wang,et al.  Microstructure and Mechanical Property of Strip in Fe–23Mn–3Si–3Al TWIP Steel by Twin Roll Casting , 2009 .

[372]  Wenjun Lu,et al.  κ-carbide hardening in a low-density high-Al high-Mn multiphase steel , 2015 .

[373]  S. C. Sharma,et al.  Radiation-induced segregation in austenitic stainless steel type 304: Effect of high fraction of twin boundaries , 2011 .

[374]  K. Verbeken,et al.  Effect of the addition of P on the mechanical properties of low alloyed TRIP steels , 2006 .

[375]  Zhen-Yu Liu,et al.  Correlation between mechanical properties and retained austenite characteristics in a low-carbon medium manganese alloyed steel plate , 2015 .

[376]  I. Shimizu,et al.  Influence of Ti and Nb on the Strength–Ductility–Hole Expansion Ratio Balance of Hot-rolled Low-carbon High-strength Steel Sheets , 2012 .

[377]  Helena Titheridge,et al.  Vehicle mass as a determinant of fuel consumption and secondary safety performance , 2009 .

[378]  H. Maier,et al.  Competing mechanisms and modeling of deformation in austenitic stainless steel single crystals with and without nitrogen , 2001 .

[379]  Baosheng Liu,et al.  Metadynamic recrystallization behavior and workability characteristics of HR3C austenitic heat-resistant stainless steel with processing map , 2016 .

[380]  L. P. Karjalainen,et al.  Effect of Austenite Pancaking on the Microstructure, Texture, and Bendability of an Ultrahigh-Strength Strip Steel , 2014, Metallurgical and Materials Transactions A.

[381]  K. Findley,et al.  The influence of silicon and aluminum alloying on the lattice parameter and stacking fault energy of austenitic steel , 2014 .

[382]  M. P. Phaniraj,et al.  Development of high strength hot rolled low carbon copper-bearing steel containing nanometer sized carbides , 2015 .

[383]  M. Herbig,et al.  Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boun , 2013 .

[384]  Kyung-Tae Park,et al.  Microband-induced plasticity in a high Mn–Al–C light steel , 2008 .

[385]  J. Adamczyk,et al.  Structure and mechanical properties of DP-type and TRIP-type sheets obtained after the thermomechanical processing , 2005 .

[386]  G. Krauss,et al.  The effect of structure on the deformation of as-quenched and tempered martensite in an Fe-0.2 pct C alloy , 1976 .

[387]  B. Fernández,et al.  Evolution of austenite static recrystallization and grain size during hot rolling of a V-microalloyed steel , 2009 .

[388]  T. Tomida,et al.  Grain Refinement of C–Mn Steel to 1 μm by Rapid Cooling and Short Interval Multi-pass Hot Rolling in Stable Austenite Region , 2008 .

[389]  C. Tasan,et al.  An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design , 2015 .

[390]  Mao-qiu Wang,et al.  Effect of Microstructure Refinement on the Strength and Toughness of Low Alloy Martensitic Steel , 2009 .

[391]  T. Tsuchiyama,et al.  Microstructure and mechanical properties of a medium manganese steel treated with interrupted quenching and intercritical annealing , 2016 .

[392]  L. P. Karjalainen,et al.  Design of a new Ni-free austenitic stainless steel with unique ultrahigh strength-high ductility synergy , 2014 .

[393]  S. Sankaran,et al.  Processing of Bimodal Grain-Sized Ultrafine-Grained Dual Phase Microalloyed V-Nb Steel with 1370 MPa Strength and 16 pct Uniform Elongation Through Warm Rolling and Intercritical Annealing , 2014, Metallurgical and Materials Transactions A.

[394]  C. G. Park,et al.  Strain-induced precipitation of NbC in Nb and Nb-Ti microalloyed HSLA steels , 2002 .

[395]  T. Tsuchiyama,et al.  Effect of Grain Size on Thermal and Mechanical Stability of Austenite in Metastable Austenitic Stainless Steel , 2013 .

[396]  X. D. Wang,et al.  Carbide characterization in a Nb-microalloyed advanced ultrahigh strength steel after quenching-partitioning-tempering process , 2010 .

[397]  K. Ou,et al.  Substructure hardening in duplex low density steel , 2017 .

[398]  P. Ferreira,et al.  Influence of annealing treatment on the formation of nano/submicron grain size AISI 301 Austenitic stainless steels , 2006 .

[399]  Ping Liu,et al.  Ultrahigh strength-ductility steel treated by a novel quenching–partitioning–tempering process , 2014 .

[400]  Dong-Woo Suh,et al.  Fe–Al–Mn–C lightweight structural alloys: a review on the microstructures and mechanical properties , 2013, Science and technology of advanced materials.

[401]  A. Grajcar Thermodynamic analysis of precipitation processes in Nb–Ti-microalloyed Si–Al TRIP steel , 2014, Journal of Thermal Analysis and Calorimetry.

[402]  H. Bhadeshia,et al.  A Model for the Microstructure of Some Advanced Bainitic Steels , 1991 .

[403]  Q. Feng,et al.  Microstructures and mechanical properties of hot-rolled Nb-microalloyed TRIP steels by different thermo-mechanical processes , 2014 .

[404]  Han. Dong,et al.  Enhanced mechanical properties of a hot stamped advanced high-strength steel treated by quenching and partitioning process , 2011 .

[405]  Sangho Kim,et al.  Brittle intermetallic compound makes ultrastrong low-density steel with large ductility , 2015, Nature.

[406]  D. Field,et al.  The role of annealing twins during recrystallization of Cu , 2007 .

[407]  Y. Rong,et al.  Strengthening and toughening mechanisms of quenching–partitioning–tempering (Q–P–T) steels , 2013 .

[408]  R. W. Neu,et al.  Performance and Characterization of TWIP Steels for Automotive Applications , 2013 .

[409]  S. Ringer,et al.  Clustering and precipitation processes in a ferritic titanium-molybdenum microalloyed steel , 2017 .

[410]  Mingxing Zhang,et al.  A review of hydrogen embrittlement of martensitic advanced high-strength steels , 2016 .

[411]  M. A. Mohtadi-Bonab,et al.  Microstructure evolution and mechanical behavior of a new microalloyed high Mn austenitic steel during compressive deformation , 2014 .

[412]  Wenjun Lu,et al.  Influence of κ-carbide interface structure on the formability of lightweight steels , 2016 .

[413]  Tadashi Furuhara,et al.  The morphology and crystallography of lath martensite in Fe-C alloys , 2003 .

[414]  A. Preban,et al.  The effect of ferrite grain size and martensite volume fraction on the tensile properties of dual phase steel , 1985 .

[415]  D. Matlock,et al.  Quenched and Partitioned Microstructures Produced via Gleeble Simulations of Hot-Strip Mill Cooling Practices , 2011 .

[416]  L. Heping,et al.  An ultrahigh strength steel produced through deformation-induced ferrite transformation and Q&P process , 2012 .

[417]  Sunghak Lee,et al.  Effect of Austenite Stability on Microstructural Evolution and Tensile Properties in Intercritically Annealed Medium-Mn Lightweight Steels , 2016, Metallurgical and Materials Transactions A.

[418]  Seong-Gu Hong,et al.  Effects of rolling temperature on the microstructure and mechanical properties of Ti–Mo microalloyed hot-rolled high strength steel , 2014 .

[419]  Xiaodong Wang,et al.  Effect of Coiling Temperature on Microstructure and Tensile Behavior of a Hot-Rolled Ferritic Lightweight Steel , 2016, Metallurgical and Materials Transactions A.

[420]  N. Petch,et al.  The Cleavage Strength of Polycrystals , 1953 .

[421]  A. Haldar,et al.  Current state of Fe-Mn-Al-C low density steels , 2017 .

[422]  Shigekazu Morito,et al.  The morphology and crystallography of lath martensite in alloy steels , 2006 .

[423]  C. M. Sellars,et al.  Modelling the kinetics of strain induced precipitation in Nb microalloyed steels , 2001 .

[424]  S. Venugopal,et al.  Processing map for cold and hot working of stainless steel type AISI 304 , 1993 .

[425]  Z. Zhang,et al.  Comparison of work hardening and deformation twinning evolution in Fe–22Mn–0.6C–(1.5Al) twinning-induced plasticity steels , 2013 .

[426]  Jonathan P. Wright,et al.  Martensitic transformation of individual grains in low-alloyed TRIP steels , 2007 .

[427]  C. G. Park,et al.  Atom probe tomography and nano secondary ion mass spectroscopy investigation of the segregation of boron at austenite grain boundaries in 0.5 wt.% carbon steels , 2011 .

[428]  S. Kalidindi,et al.  Influence of grain size and stacking-fault energy on deformation twinning in fcc metals , 1999 .

[429]  A. Zarei‐Hanzaki,et al.  Dynamic restoration processes in high-Mn TWIP steels , 2009 .

[430]  Mahmoud Y. Demeri,et al.  Advanced High-Strength Steels: Science, Technology, and Applications , 2013 .

[431]  E. Pereloma,et al.  Transformation behaviour in thermomechanically processed C–Mn–Si TRIP steels with and without Nb , 1999 .

[432]  S. Papaefthymiou A New Opportunity for the Design of Advanced High Strength Steels with Heterogeneous-Phase Microstructures via Rapid Thermal Processing , 2017 .

[433]  H. Yi Review on δ-Transformation-Induced Plasticity (TRIP) Steels with Low Density: The Concept and Current Progress , 2014 .

[434]  Z. D. Wang,et al.  Influence of grain structure on the deformation mechanism in martensitic shear reversion-induced Fe-16Cr-10Ni model austenitic alloy with low interstitial content: Coarse-grained versus nano-grained/ultrafine-grained structure , 2016 .

[435]  M. Koyama,et al.  Work hardening and uniform elongation of an ultrafine-grained Fe–33Mn binary alloy , 2011 .

[436]  Tae-Ho Lee,et al.  Effects of volume fraction and stability of retained austenite on formability in a 0.1C–1.5Si–1.5Mn–0.5Cu TRIP-aided cold-rolled steel sheet , 2004 .

[437]  Hu Bin,et al.  Recent progress in medium-Mn steels made with new designing strategies, a review , 2017 .

[438]  S. Hosseini,et al.  Effect of prior austenite characteristics on mechanical properties of thermomechanically processed multiphase TRIP assisted steels , 2008 .

[439]  E. Pereloma,et al.  Microstructure-Property Relationship in the Thermomechanically Processed C-Mn-Si-Nb-Al-(Mo) Transformation-Induced Plasticity Steels Before and After Prestraining and Bake Hardening Treatment , 2012, Metallurgical and Materials Transactions A.

[440]  Chengbao Liu,et al.  Process design and prediction of mechanical properties of dual phase steels with prepositional ultra fast cooling , 2014 .

[441]  D. Raabe,et al.  The effect of grain size and grain orientation on deformation twinning in a Fe-22 wt.% Mn-0.6 wt.% C TWIP steel , 2010 .

[442]  A. K. Bhaduri,et al.  Studies on twinning and grain boundary character distribution during anomalous grain growth in a Ti-modified austenitic stainless steel , 2009 .

[443]  G. Thomas,et al.  Structure and properties of thermal-mechanically treated 304 stainless steel , 1970 .

[444]  L. P. Karjalainen,et al.  Nanograined/Ultrafine-Grained Structure and Tensile Deformation Behavior of Shear Phase Reversion-Induced 301 Austenitic Stainless Steel , 2010 .

[445]  Kebing Zhang,et al.  A new effect of retained austenite on ductility enhancement in high-strength quenching–partitioning–tempering martensitic steel , 2011 .

[446]  J. McDermid,et al.  Development of the surface structure of TRIP steels prior to hot-dip galvanizing , 2007 .

[447]  D. Raabe,et al.  Bulk combinatorial design of ductile martensitic stainless steels through confined martensite-to-aus , 2013 .

[448]  R. Misra,et al.  Deformation behavior of high yield strength – High ductility ultrafine-grained 316LN austenitic stainless steel , 2017 .

[449]  T. Shun,et al.  A study of work hardening in austenitic FeMnC and FeMnAlC alloys , 1992 .

[450]  E. Butler,et al.  Reversion of bcc α′ martensite in Fe–Cr–Ni austenitic stainless steels , 1983 .

[451]  S. Y. Han,et al.  Ultrafine grained dual phase steel fabricated by equal channel angular pressing and subsequent intercritical annealing , 2004 .

[452]  Ke Yang,et al.  Study of the processing map and hot deformation behavior of a Cu-bearing 317LN austenitic stainless steel , 2015 .

[453]  H. Noguchi,et al.  Bone-like crack resistance in hierarchical metastable nanolaminate steels , 2017, Science.

[454]  O. Bouaziz,et al.  Evolution of microstructure and mechanical properties of medium Mn steels during double annealing , 2012 .

[455]  Zhangjian Zhou,et al.  Study on hot workability and optimization of process parameters of a modified 310 austenitic stainless steel using processing maps , 2015 .

[456]  Adam Grajcar,et al.  Thermo-mechanical processing of high-manganese austenitic TWIP-type steels , 2008 .

[457]  Hui-bin Wu,et al.  Effect of Nb addition on the microstructure and mechanical properties of an 1800 MPa ultrahigh strength steel , 2015 .

[458]  Q. Yong,et al.  Precipitation behavior and mechanical properties of hot-rolled high strength Ti-Mo-bearing ferritic sheet steel: The great potential of nanometer-sized (Ti, Mo)C carbide , 2016 .

[459]  R. Dronskowski,et al.  κ‐Phase Formation in Fe–Mn–Al–C Austenitic Steels , 2015 .

[460]  Y. Prasad,et al.  Modelling of hot deformation for microstructural control , 1998 .

[461]  L. P. Karjalainen,et al.  High temperature deformation behavior of two as-cast high-manganese TWIP steels , 2013 .

[462]  Michael F. McGuire,et al.  Stainless Steels for Design Engineers , 2008 .

[463]  M. Koyama,et al.  Tensile deformation behavior of Fe-Mn-C TWIP steel with ultrafine elongated grain structure , 2012 .

[464]  P. Hodgson,et al.  The Influence of Bainite on Retained Austenite Characteristics in Si-Mn TRIP Steels , 1995 .

[465]  V. Uthaisangsuk,et al.  Microstructure based prediction of strain hardening behavior of dual phase steels , 2012 .

[466]  S. Hosseini,et al.  Effects of ferrite phase characteristics on microstructure and mechanical properties of thermomechanically-processed low-silicon content TRIP-assisted steels , 2015 .

[467]  H. Fujita,et al.  A formation mechanism of mechanical twins in F.C.C. Metals , 1975 .

[468]  R. Turk,et al.  Modeling the dynamic recrystallization under multi-stage hot deformation , 2004 .

[469]  Xiangwei Kong,et al.  Optimization of mechanical properties of high strength bainitic steel using thermo-mechanical control and accelerated cooling process , 2015 .

[470]  N. Tsuji Ways to Manage Both Strength and Ductility in Nanostructured Steels , 2011 .

[471]  M. Naderi,et al.  Enhanced Mechanical Properties of a Hot-Stamped Advanced High-Strength Steel via Tempering Treatment , 2013, Metallurgical and Materials Transactions A.

[472]  L. Wenli,et al.  Effect of a quenching–long partitioning treatment on the microstructure and mechanical properties of a 0.2C% bainitic steel , 2015 .

[473]  T. Furuhara,et al.  Effect of Austenite Grain Size on the Morphology and Crystallography of Lath Martensite in Low Carbon Steels , 2005 .

[474]  N. Medvedeva,et al.  An Atom Probe Study of Kappa Carbide Precipitation and the Effect of Silicon Addition , 2014, Metallurgical and Materials Transactions A.

[475]  J. W. Morris Comments on the Microstructure and Properties of Ultrafine Grained Steel , 2008 .

[476]  K. Yi,et al.  The role of grain boundaries in the initial oxidation behavior of austenitic stainless steel containing alloyed Cu at 700 °C for advanced thermal power plant applications , 2015 .

[477]  Hoon Huh,et al.  Comparison of the optimum designs of center pillar assembly of an auto-body between conventional steel and ahss with a simplified side impact analysis , 2012 .

[478]  L. Dobrzański,et al.  Microstructure evolution of high-manganese steel during the thermomechanical processing , 2009 .

[479]  R. Kaibyshev,et al.  On Regularities of Grain Refinement through Large Strain Deformation , 2016 .

[480]  S. K. Kim,et al.  Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0.8C steel , 2010 .

[481]  G. Speich,et al.  Formation of Austenite During Intercritical Annealing of Dual-Phase Steels , 1981 .

[482]  Y. Wang,et al.  Deformation Temperature Dependence of Mechanical Properties and Microstructures for a Novel Quenching–Partitioning–Tempering Steel , 2013 .

[483]  R. Misra,et al.  Enhanced strain hardening and microstructural characterization in a low carbon quenching and partitioning steel with partial austenization , 2015 .

[484]  H. Kim,et al.  Effect of C content on the microstructure and tensile properties of lightweight ferritic Fe-8Al-5Mn-0.1Nb alloy , 2015, Metals and Materials International.

[485]  R. Kuziak,et al.  Development and validation of multi scale failure model for dual phase steels , 2017 .