Host-parasite interactions revealed by Plasmodium falciparum metabolomics.

[1]  K. Kirk,et al.  Metabolite profiling of the intraerythrocytic malaria parasite Plasmodium falciparum by 1H NMR spectroscopy , 2009, NMR in biomedicine.

[2]  M. Tanner,et al.  Global metabolic responses of NMRI mice to an experimental Plasmodium berghei infection. , 2008, Journal of proteome research.

[3]  Kiaran Kirk,et al.  Purine Salvage Pathways in the Intraerythrocytic Malaria Parasite Plasmodium falciparum , 2008, Eukaryotic Cell.

[4]  M. Barrett,et al.  Glucose-induced Remodeling of Intermediary and Energy Metabolism in Procyclic Trypanosoma brucei* , 2008, Journal of Biological Chemistry.

[5]  A. Regev,et al.  Distinct physiological states of Plasmodium falciparum in malaria-infected patients , 2007, Nature.

[6]  R. Price,et al.  Impaired nitric oxide bioavailability and l-arginine–reversible endothelial dysfunction in adults with falciparum malaria , 2007, The Journal of experimental medicine.

[7]  Joanne M. Morrisey,et al.  Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum , 2007, Nature.

[8]  Matthew J. Brauer,et al.  Conservation of the metabolomic response to starvation across two divergent microbes , 2006, Proceedings of the National Academy of Sciences.

[9]  Thomas Shenk,et al.  Dynamics of the Cellular Metabolome during Human Cytomegalovirus Infection , 2006, PLoS pathogens.

[10]  J. Frangos,et al.  Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria , 2006, Nature Medicine.

[11]  Wenyun Lu,et al.  Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. , 2006, Journal of chromatography. A.

[12]  Elaine Holmes,et al.  Transgenomic metabolic interactions in a mouse disease model: interactions of Trichinella spiralis infection with dietary Lactobacillus paracasei supplementation. , 2006, Journal of proteome research.

[13]  G. McFadden,et al.  Metabolic maps and functions of the Plasmodium mitochondrion. , 2006, FEMS microbiology reviews.

[14]  Jun Liu,et al.  Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[15]  H. Ginsburg Progress in in silico functional genomics: the malaria Metabolic Pathways database. , 2006, Trends in parasitology.

[16]  Thomas Lauer,et al.  Red blood cells express a functional endothelial nitric oxide synthase. , 2006, Blood.

[17]  C. Janse,et al.  High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei , 2006, Nature Protocols.

[18]  Joshua D. Rabinowitz,et al.  A high-performance liquid chromatography-tandem mass spectrometry method for quantitation of nitrogen-containing intracellular metabolites , 2006, Journal of the American Society for Mass Spectrometry.

[19]  G. Siuzdak,et al.  The Expanding Role of Mass Spectrometry in Metabolite Profiling and Characterization , 2005, Chembiochem : a European journal of chemical biology.

[20]  J. Frangos,et al.  Nitric oxide bioavailability in malaria. , 2005, Trends in parasitology.

[21]  Stanley L Hazen,et al.  Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease. , 2005, JAMA.

[22]  A. Celada,et al.  Arginase and polyamine synthesis are key factors in the regulation of experimental leishmaniasis in vivo , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[23]  G. Evans,et al.  Targeting a Novel Plasmodium falciparum Purine Recycling Pathway with Specific Immucillins* , 2005, Journal of Biological Chemistry.

[24]  G. McFadden,et al.  The malaria parasite Plasmodium falciparum has only one pyruvate dehydrogenase complex, which is located in the apicoplast , 2004, Molecular microbiology.

[25]  K. Kirk,et al.  Plasmodium permeomics: membrane transport proteins in the malaria parasite. , 2005, Current topics in microbiology and immunology.

[26]  R. D. Walter,et al.  Structural metal dependency of the arginase from the human malaria parasite Plasmodium falciparum , 2005, Biological chemistry.

[27]  P. Stacpoole,et al.  Metabolic complications of severe malaria. , 2005, Current topics in microbiology and immunology.

[28]  K. Marsh,et al.  Clinical features and pathogenesis of severe malaria. , 2004, Trends in parasitology.

[29]  M. Tanner,et al.  Metabonomic investigations in mice infected with Schistosoma mansoni: an approach for biomarker identification. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  D. Kell Metabolomics and systems biology: making sense of the soup. , 2004, Current opinion in microbiology.

[31]  J. Satriano Arginine pathways and the inflammatory response: Interregulation of nitric oxide and polyamines: Review article , 2004, Amino Acids.

[32]  Christopher J. Tonkin,et al.  Tropical infectious diseases: Metabolic maps and functions of the Plasmodium falciparum apicoplast , 2004, Nature Reviews Microbiology.

[33]  J. Derisi,et al.  The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum , 2003, PLoS biology.

[34]  I. Sherman,et al.  Cytoadherence and sequestration in Plasmodium falciparum: defining the ties that bind. , 2003, Microbes and infection.

[35]  U. Sauer,et al.  Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. , 2003, European journal of biochemistry.

[36]  N. Anstey,et al.  Low plasma arginine concentrations in children with cerebral malaria and decreased nitric oxide production , 2003, The Lancet.

[37]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[38]  J. Sachs,et al.  The economic and social burden of malaria , 2002, Nature.

[39]  H. Ginsburg,et al.  Intraerythrocytic Plasmodium falciparum utilizes only a fraction of the amino acids derived from the digestion of host cell cytosol for the biosynthesis of its proteins. , 2002, Molecular and biochemical parasitology.

[40]  J. Lindon,et al.  Metabonomics: a platform for studying drug toxicity and gene function , 2002, Nature Reviews Drug Discovery.

[41]  A. Gobert,et al.  Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: A strategy for bacterial survival , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  B. Ryffel,et al.  Parasite killing in murine malaria does not require nitric oxide production , 1999, Parasitology.

[43]  N. Lang-Unnasch,et al.  Metabolic changes of the malaria parasite during the transition from the human to the mosquito host. , 1998, Annual review of microbiology.

[44]  Irwin W. Sherman,et al.  Malaria : parasite biology, pathogenesis, and protection , 1998 .

[45]  P. Gerold,et al.  Glycosylphosphatidylinositol toxin of Plasmodium induces nitric oxide synthase expression in macrophages and vascular endothelial cells by a protein tyrosine kinase-dependent and protein kinase C-dependent signaling pathway. , 1996, Journal of immunology.

[46]  K. Mendis,et al.  Cytokine-mediated inactivation of malarial gametocytes is dependent on the presence of white blood cells and involves reactive nitrogen intermediates. , 1993, Immunology.

[47]  Kouichi R. Tanaka,et al.  Increased nicotinamide adenine dinucleotide content and synthesis in Plasmodium falciparum-infected human erythrocytes. , 1990, Blood.

[48]  C. Lambros,et al.  Synchronization of Plasmodium falciparum erythrocytic stages in culture. , 1979, The Journal of parasitology.

[49]  W. Trager,et al.  Human malaria parasites in continuous culture. , 1976, Science.