Setting the length and time scales of a cellular automaton dune model from the analysis of superimposed bed forms

[1] We present a new 3-D cellular automaton model for bed form dynamics in which individual physical processes such as erosion, deposition, and transport are implemented by nearest neighbor interactions and a time-dependent stochastic process. Simultaneously, a lattice gas cellular automaton model is used to compute the flow and quantify the bed shear stress on the topography. Local erosion rates are assumed to be proportional to the shear stress in such a way that there is a complete feedback mechanism between flow and bed form dynamics. In the numerical simulations of dune fields, we observe the formation and the evolution of superimposed bed forms on barchan and transverse dunes. Using the same model under different initial conditions, we perform the linear stability analysis of a flat sand bed disturbed by a small sinusoidal perturbation. Comparing the most unstable wavelength in the model with the characteristic size of secondary bed forms in nature, we determine the length and time scales of our cellular automaton model. Thus, we establish a link between discrete and continuous approaches and open new perspectives for modeling and quantification of complex patterns in dune fields.

[1]  P. Bak,et al.  Self-organized criticality. , 1988, Physical review. A, General physics.

[2]  J. Hunt,et al.  Turbulent wind flow over a low hill , 1975 .

[3]  P. Hersen On the crescentic shape of barchan dunes , 2004 .

[4]  Giles F.S. Wiggs Desert dune processes and dynamics , 2001 .

[5]  Gary Parker,et al.  SEDIMENT INERTIA AS CAUSE OF RIVER ANTIDUNES , 1975 .

[6]  U. Frisch,et al.  Lattice gas models for 3D hydrodynamics , 1986 .

[7]  Larry W. Lake,et al.  Pattern analysis of dune‐field parameters , 2006 .

[8]  F. Charru Selection of the ripple length on a granular bed sheared by a liquid flow , 2006 .

[9]  Bruno Andreotti,et al.  A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples , 2006, cond-mat/0603656.

[10]  J. E. Ungar,et al.  Steady state saltation in air , 1987 .

[11]  H. Heywood The Physics of Blown Sand and Desert Dunes , 1941, Nature.

[12]  P. Claudin,et al.  Selection of dune shapes and velocities Part 2: A two-dimensional modelling , 2002, cond-mat/0201105.

[13]  Gerd Sauermann,et al.  Minimal model for sand dunes. , 2002, Physical review letters.

[14]  K. H. Andersen,et al.  A SIMPLE MODEL FOR THE VARIOUS PATTERN DYNAMICS OF DUNES , 1998 .

[15]  Y. Pomeau,et al.  Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions , 1976 .

[16]  H. Herrmann,et al.  Minimal size of a barchan dune. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  A. J. Reynolds Waves on the erodible bed of an open channel , 1965, Journal of Fluid Mechanics.

[18]  H J Herrmann,et al.  Continuum saltation model for sand dunes. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Daniel H. Rothman,et al.  Lattice-Gas Cellular Automata: Simple Models of Complex Hydrodynamics , 1997 .

[20]  Jean-Paul Poirier,et al.  On a small-scale roughness of the core–mantle boundary , 2001 .

[21]  Jørgen Fredsøe,et al.  Sediment Ripples and Dunes , 1982 .

[22]  Jørgen Fredsøe,et al.  On the development of dunes in erodible channels , 1974, Journal of Fluid Mechanics.

[23]  J. Hunt,et al.  Turbulent shear flows over low hills , 1988 .

[24]  Kelvin J. Richards,et al.  The formation of ripples and dunes on an erodible bed , 1980, Journal of Fluid Mechanics.

[25]  H. Momiji,et al.  Relations of sand trapping efficiency and migration speed of transverse dunes to wind velocity. , 2000 .

[26]  R. I. Sykes,et al.  An asymptotic theory of incompressible turbulent boundarylayer flow over a small hump , 1980, Journal of Fluid Mechanics.

[27]  J. Kennedy The mechanics of dunes and antidunes in erodible-bed channels , 1963, Journal of Fluid Mechanics.

[28]  Comment on "Minimal size of a barchan dune". , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  F. Engelund Instability of erodible beds , 1970, Journal of Fluid Mechanics.

[30]  R. Bagnold,et al.  The Physics of Blown Sand and Desert Dunes , 1941 .

[31]  Bruno Andreotti,et al.  A two-species model of aeolian sand transport , 2004, Journal of Fluid Mechanics.

[32]  G. Kocurek,et al.  Bed-form dynamics: Does the tail wag the dog? , 1997 .

[33]  E. F. Bradley,et al.  Boundary-layer flow over low hills , 1987 .

[34]  Bastien Chopard,et al.  Cellular Automata Modeling of Physical Systems: Index , 1998 .

[35]  N. Ouchi,et al.  Computational Models for Sand Ripple and Sand Dune Formation , 1993 .

[36]  Nicholas Lancaster,et al.  Age and dynamics of linear dunes in the Namib Desert , 2007 .

[37]  Frisch,et al.  Lattice gas automata for the Navier-Stokes equations. a new approach to hydrodynamics and turbulence , 1989 .

[38]  N. Lancaster,et al.  The sedimentary structure of linear sand dunes , 2000, Nature.

[39]  R. Müller,et al.  Formulas for Bed-Load transport , 1948 .

[40]  P. Haff,et al.  Simulation of Eolian Saltation , 1988, Science.

[41]  J. Iversen,et al.  Saltation and wind-flow interaction in a variable slope wind tunnel , 1996 .

[42]  K. H. Andersen,et al.  Corridors of barchan dunes: Stability and size selection. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Bruno Andreotti,et al.  Barchan dune corridors: Field characterization and investigation of control parameters , 2006, cond-mat/0609120.

[44]  Edwin Dinwiddie McKee,et al.  A study of global sand seas , 1979 .

[45]  Hans J Herrmann,et al.  Vegetation against dune mobility. , 2006, Physical review letters.

[46]  Nicholas Lancaster,et al.  Geomorphology of Desert Dunes , 1995 .

[47]  H. Herrmann,et al.  Dune formation on the present Mars. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  H. Herrmann,et al.  Minimal model for aeolian sand dunes. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  B. Werner Eolian dunes: Computer simulations and attractor interpretation , 1995 .

[50]  A. Baas,et al.  Modelling vegetated dune landscapes , 2007 .

[51]  G. Kocurek,et al.  Aeolian dune field self-organization – implications for the formation of simple versus complex dune-field patterns , 2005 .

[52]  G. Kocurek,et al.  Amalgamated accumulations resulting from climatic and eustatic changes, Akchar Erg, Mauritania , 1991 .

[53]  P. Claudin,et al.  Field evidence for surface-wave-induced instability of sand dunes , 2005, Nature.

[54]  R. Bagnold,et al.  The flow of cohesionless grains in fluids , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[55]  Reply to "Comment on 'Minimal size of a barchan dune' " , 2007, 0708.1340.