Variations of the bacterial foraging algorithm for the extraction of PV module parameters from nameplate data

Abstract The paper introduces the task of parameter extraction of photovoltaic (PV) modules as a nonlinear optimization problem. The concerned parameters are the series resistance, shunt resistance, diode ideality factor, and diode reverse saturation current for both the single- and double-diode models. An error function representing the mismatch between computed and targeted performance is minimized using different versions of the bacterial foraging (BF) algorithm of global search and heuristic optimization. The targeted performance is obtained from the nameplate data of the PV module. Five distinct variations of the BF algorithm are used to solve the problem independently for the single- and double-diode models. The best optimization results are obtained when swarming is eliminated, chemotactic step size is dynamically varied, and global best is preserved, all acting together. Under such conditions, the best global minimum of 0.0028 is reached in an average best time of 94.4 sec for the single-diode model. However, it takes an average of 153 sec to reach the best global minimum of 0.0021 in case of double-diode model. An experimental verification study involves the comparison of computed performance to measurements on an Eclipsall PV module. It is shown that all variants of the BF algorithm could reach equivalent-circuit parameters with accepted accuracy by solving the optimization problem. The good matching between analytical and experimental results indicates the effectiveness of the proposed method and validates research findings.

[1]  Domingos S. L. Simonetti,et al.  Identification of photovoltaic model parameters by Differential Evolution , 2010, 2010 IEEE International Conference on Industrial Technology.

[2]  Amit Konar,et al.  On Stability of the Chemotactic Dynamics in Bacterial-Foraging Optimization Algorithm , 2009, IEEE Trans. Syst. Man Cybern. Part A.

[3]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .

[4]  Q. Henry Wu,et al.  Bacterial Foraging Algorithm for Optimal Power Flow in Dynamic Environments , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  K. Ebihara,et al.  Estimation of equivalent circuit parameters of PV module and its application to optimal operation of PV system , 2001 .

[6]  Marcello Artioli,et al.  Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis , 2010 .

[7]  Rahmat Allah Hooshmand,et al.  Fuzzy Optimal Phase Balancing of Radial and Meshed Distribution Networks Using BF-PSO Algorithm , 2012, IEEE Transactions on Power Systems.

[8]  A. García,et al.  Selecting a suitable model for characterizing photovoltaic devices , 2002 .

[9]  M. Chegaar,et al.  Solar cells parameters evaluation considering the series and shunt resistance , 2007 .

[10]  V. Agarwal,et al.  MATLAB-Based Modeling to Study the Effects of Partial Shading on PV Array Characteristics , 2008, IEEE Transactions on Energy Conversion.

[11]  A. Sellami,et al.  Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction , 2010 .

[12]  Giuseppina Ciulla,et al.  An improved five-parameter model for photovoltaic modules , 2010 .

[13]  Meiying Ye,et al.  Parameter extraction of solar cells using particle swarm optimization , 2009 .

[14]  Dong Hwa Kim,et al.  A hybrid genetic algorithm and bacterial foraging approach for global optimization , 2007, Inf. Sci..

[15]  C. N. Bhende,et al.  Bacterial Foraging Technique-Based Optimized Active Power Filter for Load Compensation , 2007, IEEE Transactions on Power Delivery.

[16]  B. Vahidi,et al.  Bacterial Foraging-Based Solution to the Unit-Commitment Problem , 2009, IEEE Transactions on Power Systems.

[17]  Alon Kuperman,et al.  An improved approach to extract the single-diode equivalent circuit parameters of a photovoltaic cell/panel , 2014 .

[18]  S. Mishra,et al.  Maiden Application of Bacterial Foraging-Based Optimization Technique in Multiarea Automatic Generation Control , 2009, IEEE Transactions on Power Systems.

[19]  S. Singh,et al.  Optimal Feeder Routing Based on the Bacterial Foraging Technique , 2012, IEEE Transactions on Power Delivery.

[20]  Sukumar Mishra,et al.  A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation , 2005, IEEE Transactions on Evolutionary Computation.

[21]  M. Belhamel,et al.  Extraction and analysis of solar cell parameters from the illuminated current–voltage curve , 2005 .

[22]  Ajith Abraham,et al.  Adaptive Computational Chemotaxis in Bacterial Foraging Optimization: An Analysis , 2009, IEEE Transactions on Evolutionary Computation.

[23]  Filippo Attivissimo,et al.  Uncertainty Analysis in Photovoltaic Cell Parameter Estimation , 2012, IEEE Transactions on Instrumentation and Measurement.

[24]  Yichuan Shao,et al.  The Optimization of Cooperative Bacterial Foraging , 2009, 2009 WRI World Congress on Software Engineering.

[25]  A. Chatterjee,et al.  Identification of Photovoltaic Source Models , 2011, IEEE Transactions on Energy Conversion.

[26]  Fabricio Bradaschia,et al.  Parameter Estimation Method to Improve the Accuracy of Photovoltaic Electrical Model , 2016, IEEE Journal of Photovoltaics.

[27]  Kashif Ishaque,et al.  An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE) , 2011 .

[28]  J. Phillips,et al.  A comparative study of extraction methods for solar cell model parameters , 1986 .

[29]  Eduardo Caicedo Bravo,et al.  Simplifying the Bacteria Foraging Optimization Algorithm , 2010, IEEE Congress on Evolutionary Computation.

[30]  G. Farivar,et al.  A New Approach for Solar Module Temperature Estimation Using the Simple Diode Model , 2011, IEEE Transactions on Energy Conversion.

[31]  Javier Cubas,et al.  New method for analytical photovoltaic parameter extraction , 2013, 2013 International Conference on Renewable Energy Research and Applications (ICRERA).

[32]  Rutuparna Panda,et al.  A Crossover Bacterial Foraging Optimization Algorithm , 2012, Appl. Comput. Intell. Soft Comput..

[33]  A. K. Al-Othman,et al.  Simulated Annealing algorithm for photovoltaic parameters identification , 2012 .

[34]  P. Mialhe,et al.  Consistency of the double exponential model with physical mechanisms of conduction for a solar cell under illumination , 1985 .

[35]  Ajith Abraham,et al.  Synergy of PSO and Bacterial Foraging Optimization - A Comparative Study on Numerical Benchmarks , 2008, Innovations in Hybrid Intelligent Systems.

[36]  A. Ortiz-Conde,et al.  New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I–V characteristics , 2006 .

[37]  I. A. Farhat,et al.  Dynamic adaptive bacterial foraging algorithm for optimum economic dispatch with valve-point effects and wind power , 2010 .

[38]  Rachid Chenni,et al.  A detailed modeling method for photovoltaic cells , 2007 .

[39]  N. Rajasekar,et al.  Bacterial foraging algorithm based parameter estimation of solar PV model , 2013, 2013 Annual International Conference on Emerging Research Areas and 2013 International Conference on Microelectronics, Communications and Renewable Energy.

[40]  Q. Henry Wu,et al.  Bacterial Foraging Algorithm For Dynamic Environments , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[41]  P. Mialhe,et al.  Simple parameter extraction method for illuminated solar cells , 2006 .

[42]  Pericle Zanchetta,et al.  Hybrid Bacterial Foraging Optimization Strategy for Automated Experimental Control Design in Electrical Drives , 2013, IEEE Transactions on Industrial Informatics.

[43]  M. Barukčić,et al.  The irradiance and temperature dependent mathematical model for estimation of photovoltaic panel performances , 2015 .