Geodesic Transport Barriers in Jupiter's Atmosphere: A Video-Based Analysis

Jupiter's zonal jets and Great Red Spot are well known from still images. However, the planet's atmosphere is highly unsteady, which suggests that the actual material transport barriers delineating its main features should be time-dependent. Rare video footage of Jupiter's clouds provides an opportunity to verify this expectation from optically reconstructed velocity fields. Available videos, however, provide short-time and temporally aperiodic velocity fields that defy classical dynamical systems analyses focused on asymptotic features. To this end, we use here the recent theory of geodesic transport barriers to uncover finite-time mixing barriers in the wind field extracted from a video captured by NASA's Cassini space mission. More broadly, the approach described here provides a systematic and frame-invariant way to extract dynamic coherent structures from time-resolved remote observations of unsteady continua.

[1]  G. Haller Lagrangian coherent structures from approximate velocity data , 2002 .

[2]  A. Sánchez-Lavega,et al.  A Study of the Stability of Jovian Zonal Winds from HST Images: 1995–2000 , 2001 .

[3]  Bo Wang,et al.  Flow structures of Jupiter's Great Red Spot extracted by using optical flow method , 2012 .

[4]  George Haller,et al.  Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures , 2013 .

[5]  F. J. Beron-Vera,et al.  On the Lagrangian Dynamics of Atmospheric Zonal Jets and the Permeability of the Stratospheric Polar Vortex , 2006 .

[6]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[7]  Tian Ma,et al.  Erratum: Differential Geometry Perspective of Shape Coherence and Curvature Evolution by Finite-Time Nonhyperbolic Splitting , 2014, SIAM J. Appl. Dyn. Syst..

[8]  F. J. Beron-Vera,et al.  Zonal Jets as Transport Barriers in Planetary Atmospheres , 2008, 0803.2893.

[9]  P. Gierasch,et al.  New Observational Results Concerning Jupiter's Great Red Spot , 2002 .

[10]  G. Haller Lagrangian Coherent Structures , 2015 .

[11]  A. Vasavada,et al.  Galileo Imaging of Jupiter's Atmosphere: The Great Red Spot, Equatorial Region, and White Ovals , 1998 .

[12]  M G Brown,et al.  Robust transport barriers resulting from strong Kolmogorov-Arnold-Moser stability. , 2007, Physical review letters.

[13]  Tian Ma,et al.  Shape Coherence and Finite-Time Curvature Evolution , 2014, Int. J. Bifurc. Chaos.

[14]  Mohammad Farazmand,et al.  Shearless transport barriers in unsteady two-dimensional flows and maps , 2013, 1308.6136.

[15]  M. Botur,et al.  Lagrangian coherent structures , 2009 .

[16]  George Haller,et al.  Hyperbolic and elliptic transport barriers in three-dimensional unsteady flows , 2013, 1306.6497.

[17]  Tian Ma,et al.  Differential Geometry Perspective of Shape Coherence and Curvature Evolution by Finite-Time Nonhyperbolic Splitting , 2014, SIAM J. Appl. Dyn. Syst..

[18]  Paul E. Dimotakis,et al.  Image correlation velocimetry , 1995 .

[19]  Igor Mezić,et al.  A New Mixing Diagnostic and Gulf Oil Spill Movement , 2010, Science.

[20]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[21]  S. Limaye Erratum - Jupiter - New Estimates of the Mean Zonal Flow at the Cloud Level , 1986 .

[22]  Jifeng Peng,et al.  Attracting structures in volcanic ash transport , 2009 .

[23]  Mubarak Shah,et al.  A Lagrangian Particle Dynamics Approach for Crowd Flow Segmentation and Stability Analysis , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Michael H. Wong,et al.  Changes in Jupiter’s zonal velocity between 1979 and 2008 , 2011 .

[25]  M. Juckes,et al.  A high-resolution one-layer model of breaking planetary waves in the stratosphere , 1987, Nature.

[26]  F. M. Flasar,et al.  Thermal structure and dynamics of the Jovian atmosphere 2. Visible cloud features , 1981 .

[27]  G. Haller,et al.  Detecting invariant manifolds, attractors, and generalized KAM tori in aperiodically forced mechanical systems , 2013, 1302.1732.

[28]  A. M. Fincham,et al.  Low cost, high resolution DPIV for measurement of turbulent fluid flow , 1997 .

[29]  G. Froyland,et al.  Transport in time-dependent dynamical systems: finite-time coherent sets. , 2010, Chaos.

[30]  Christoph Schnörr,et al.  Variational fluid flow measurements from image sequences: synopsis and perspectives , 2010 .

[31]  S. Vavrus,et al.  Evidence linking Arctic amplification to extreme weather in mid‐latitudes , 2012 .

[32]  R. Hueso,et al.  Deep winds beneath Saturn’s upper clouds from a seasonal long-lived planetary-scale storm , 2011, Nature.

[33]  G. S. Golitsyn,et al.  A similarity approach to the general circulation of planetary atmospheres , 1970 .

[34]  Allen R. Tannenbaum,et al.  Anomaly detection in videos: A dynamical systems approach , 2013, 52nd IEEE Conference on Decision and Control.

[35]  Philip S. Marcus,et al.  Changes in Jupiter’s Great Red Spot (1979–2006) and Oval BA (2000–2006) , 2010 .

[36]  Haigang Zhan,et al.  Monitoring cooling water discharge using Lagrangian coherent structures: a case study in Daya Bay, China. , 2013, Marine pollution bulletin.

[37]  William B. Hubbard,et al.  Atmospheric confinement of jet streams on Uranus and Neptune , 2013, Nature.

[38]  George Haller,et al.  LCS Tool: A computational platform for Lagrangian coherent structures , 2014, J. Comput. Sci..

[39]  N. S. Hoang,et al.  A Low-Cost , 1997 .

[40]  A. Sánchez-Lavega,et al.  Jupiter's cyclones and anticyclones vorticity from Voyager and Galileo images , 2005 .

[41]  George Haller,et al.  Automated detection of coherent Lagrangian vortices in two-dimensional unsteady flows , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[42]  Thomas Peacock,et al.  Introduction to Focus Issue: Lagrangian Coherent Structures. , 2010, Chaos.

[43]  J. L. Mitchell,et al.  Interaction of eddies and mean zonal flow on Jupiter as inferred from Voyager 1 and 2 images , 1981 .

[44]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[45]  Dana Mackenzie Walls of water. , 2013, Scientific American.

[46]  G. Haller,et al.  Coherent Lagrangian vortices: the black holes of turbulence , 2013, Journal of Fluid Mechanics.

[47]  J. Leese,et al.  An Automated Technique for Obtaining Cloud Motion from Geosynchronous Satellite Data Using Cross Correlation , 1971 .

[48]  Mohammad Farazmand,et al.  Attraction-based computation of hyperbolic Lagrangian coherent structures , 2015 .

[49]  Lambertus Hesselink,et al.  Visualizing second-order tensor fields with hyperstreamlines , 1993, IEEE Computer Graphics and Applications.

[50]  G. Haller,et al.  Lagrangian coherent structures and mixing in two-dimensional turbulence , 2000 .

[51]  Hugh Alan Bruck,et al.  Digital image correlation using Newton-Raphson method of partial differential correction , 1989 .

[52]  Amy A. Simon-Miller,et al.  Longitudinal variation and waves in Jupiter's south equatorial wind jet , 2012 .

[53]  Michael H. Wong,et al.  Persistent rings in and around Jupiter's anticyclones - Observations and theory , 2010 .

[54]  D. S. Choi,et al.  Velocity and vorticity measurements of Jupiter's Great Red Spot using automated cloud feature tracking , 2005, 1301.6119.

[55]  A. Fincham,et al.  Advanced optimization of correlation imaging velocimetry algorithms , 2000 .

[56]  Andrew P. Ingersoll,et al.  Flow fields within Jupiter's Great Red Spot and White Oval BC , 1981 .

[57]  Andrew P. Ingersoll,et al.  Potential Vorticity and Layer Thickness Variations in the Flow around Jupiter's Great Red Spot and White Oval BC , 1988 .

[58]  Gustavo Goni,et al.  Oceanic mesoscale eddies as revealed by Lagrangian coherent structures , 2008 .

[59]  P. Marcus,et al.  Jupiter’s shrinking Great Red Spot and steady Oval BA: Velocity measurements with the ‘Advection Corrected Correlation Image Velocimetry’ automated cloud-tracking method , 2009 .