Numerical Optimization of Low Eigenvalues of the Dirichlet and Neumann Laplacians
暂无分享,去创建一个
[1] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[2] Dorin Bucur,et al. Minimization of the third eigenvalue of the Dirichlet Laplacian , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[3] Pedro R. S. Antunes. Numerical calculation of eigensolutions of 3D shapes using the method of fundamental solutions , 2011 .
[4] Edouard Oudet,et al. Numerical minimization of eigenmodes of a membrane with respect to the domain , 2004 .
[5] Antoine Henrot,et al. Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .
[6] Hans F. Weinberger,et al. An Isoperimetric Inequality for the N-Dimensional Free Membrane Problem , 1956 .
[7] George Polya,et al. On the Eigenvalues of Vibrating Membranes(In Memoriam Hermann Weyl) , 1961 .
[8] Pedro R. S. Antunes,et al. A numerical study of the spectral gap , 2008 .
[9] Giuseppe Buttazzo,et al. An existence result for a class of shape optimization problems , 1993 .
[10] R. Courant,et al. Methods of Mathematical Physics , 1962 .
[11] Dan Boneh,et al. On genetic algorithms , 1995, COLT '95.
[12] Jan Sokolowski,et al. Introduction to shape optimization , 1992 .
[13] Timo Betcke,et al. Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains , 2007, J. Comput. Phys..
[14] Iosif Polterovich,et al. Maximization of the second positive Neumann eigenvalue for planar domains , 2008, 0801.2142.
[15] C. B. Moler,et al. Bounds for Eigenvalues and Eigenvectors of Symmetric Operators , 1968 .
[16] G. Poliquin,et al. Wolf-Keller theorem for Neumann eigenvalues , 2010, 1007.4771.
[17] Carlos J. S. Alves,et al. The Method of Fundamental Solutions Applied to the Calculation of Eigenfrequencies and Eigenmodes of 2D Simply Connected Shapes , 2005 .
[18] J. Keller,et al. Range of the first two eigenvalues of the laplacian , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[19] Giovanni Landi,et al. Chern–Simons forms on principal superfiber bundles , 1990 .
[20] G. Szegő,et al. Inequalities for Certain Eigenvalues of a Membrane of Given Area , 1954 .
[21] Jan A Snyman,et al. Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms , 2005 .
[22] S. Cox. EXTREMAL EIGENVALUE PROBLEMS FOR STARLIKE PLANAR DOMAINS , 1995 .
[23] Jeng-Tzong Chen,et al. Eigensolutions of multiply connected membranes using the method of fundamental solutions , 2005 .
[24] A. Bogomolny. Fundamental Solutions Method for Elliptic Boundary Value Problems , 1985 .
[25] E. Krahn,et al. Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises , 1925 .
[26] Pedro Freitas,et al. New Bounds for the Principal Dirichlet Eigenvalue of Planar Regions , 2006, Exp. Math..
[27] George Polya,et al. On the characteristic frequencies of a symmetric membrane , 1955 .
[28] I. Stakgold,et al. A Variational Theorem for ∇2u+ λu= 0 and its Application , 1952 .
[29] Edouard Oudet,et al. Minimizing the Second Eigenvalue of the Laplace Operator with Dirichlet Boundary Conditions , 2003 .