Lifting and Elliptic Curve Discrete Logarithms
暂无分享,去创建一个
[1] Loïc Merel,et al. Bornes pour la torsion des courbes elliptiques sur les corps de nombres , 1996 .
[2] Ian F. Blake,et al. Elliptic curves in cryptography , 1999 .
[3] Nigel P. Smart,et al. Elliptic Curves in Cryptography: Preface , 1999 .
[4] Jeffrey Shallit,et al. Algorithmic Number Theory , 1996, Lecture Notes in Computer Science.
[5] André Néron,et al. Problèmes arithmétique et géométriques rattachés à la notion de rang d'une courbe algébrique dans un corps , 1952 .
[6] W. Kohnen,et al. Heegner points and derivatives ofL-series. II , 1987 .
[7] J. Top,et al. On the Mordell-Weil rank of an abelian variety over a number field , 1989 .
[8] J. Hoffstein,et al. An introduction to mathematical cryptography , 2008 .
[9] Joe Suzuki,et al. Elliptic Curve Discrete Logarithms and the Index Calculus , 1998, ASIACRYPT.
[10] Joseph H. Silverman,et al. Computing canonical heights with little (or no) factorization , 1997, Math. Comput..
[11] S. Lang,et al. Elliptic Curves: Diophantine Analysis , 1978 .
[12] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[13] Kazuo Ohta,et al. Advances in Cryptology — ASIACRYPT’98 , 2002, Lecture Notes in Computer Science.
[14] N. Koblitz. Elliptic curve cryptosystems , 1987 .
[16] 晋輝 趙,et al. H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen and F. Vercauteren (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptography, Discrete Math. Appl. (Boca Raton)., Chapman & Hall/CRC, 2006年,xxxiv + 808ページ. , 2009 .
[17] Alfred Menezes,et al. Handbook of Applied Cryptography , 2018 .
[18] Andreas Stein,et al. Analysis of the Xedni Calculus Attack , 2000, Des. Codes Cryptogr..
[19] Igor A. Semaev,et al. Evaluation of discrete logarithms in a group of p-torsion points of an elliptic curve in characteristic p , 1998, Math. Comput..
[20] A. Wiles,et al. Ring-Theoretic Properties of Certain Hecke Algebras , 1995 .
[21] D. W. Masser. Specializations of finitely generated subgroups of abelian varieties , 1989 .
[22] Tibor Juhas. The use of elliptic curves in cryptography , 2007 .
[23] Douglas R. Stinson,et al. Cryptography: Theory and Practice , 1995 .
[24] Joseph H. Silverman,et al. Computing heights on elliptic curves , 1988 .
[25] M. Deuring. Die Typen der Multiplikatorenringe elliptischer Funktionenkörper , 1941 .
[26] A. Wiles. Modular Elliptic Curves and Fermat′s Last Theorem(抜粋) (フェルマ-予想がついに解けた!?) , 1995 .
[27] Leonard M. Adleman,et al. A Subexponential Algorithm for Discrete Logarithms over Hyperelliptic Curves of Large Genus over GF(q) , 1999, Theor. Comput. Sci..
[28] Tanja Lange,et al. Handbook of Elliptic and Hyperelliptic Curve Cryptography , 2005 .
[29] Mathematische,et al. Heegner Points and Derivatives of L-Series. II , 2005 .
[30] Takakazu Satoh,et al. Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves , 1998 .
[31] Barry Mazur,et al. Modular curves and the eisenstein ideal , 1977 .
[32] Joseph H. Silverman,et al. The canonical height and integral points on elliptic curves , 1988 .
[33] Jean-François Mestre,et al. Formules explicites et minoration de conducteurs de vari'et'es alg'ebriques , 1986 .
[34] J. Cheon,et al. On Remarks of Lifting Problems for Elliptic Curves , 2000 .
[35] Nigel P. Smart,et al. The Discrete Logarithm Problem on Elliptic Curves of Trace One , 1999, Journal of Cryptology.
[36] Jean-Pierre Serre. Propriétés galoisiennes des points d'ordre fini des courbes elliptiques , 1971 .
[37] J. Cassels,et al. ABELIAN l -ADIC REPRESENTATIONS AND ELLIPTIC CURVES , 1969 .
[38] Qi Cheng,et al. Partial Lifting and the Elliptic Curve Discrete Logarithm Problem , 2004, Algorithmica.
[39] Ming-Deh A. Huang,et al. Lifting Elliptic Curves and Solving the Elliptic Curve Discrete Logarithm Problem , 2000, ANTS.
[40] Wolfgang Bauer. Implementing elliptic curve cryptography , 2002, Communications and Multimedia Security.
[41] Joseph H. Silverman,et al. The Xedni Calculus and the Elliptic Curve Discrete Logarithm Problem , 2000, Des. Codes Cryptogr..
[42] Sarah Meiklejohn,et al. Review of an introduction to mathematical cryptography by Jeffrey Hoffstein, Jill Pipher, and Joseph Silverman Springer-Verlag, 2008 , 2010, SIGA.
[43] R. Taylor,et al. On the modularity of elliptic curves over 𝐐: Wild 3-adic exercises , 2001, Journal of the American Mathematical Society.