Design of long-lifetime lunar orbits: A hybrid approach

Abstract The behavior of low altitude near-circular lunar orbits is a key design issue for some missions related to the physical exploration of the Moon. Because of its masconian character, the gravity field of the Moon requires higher order truncations to give a realistic description of the long-term behavior of low-lunar orbits. We show that the required understanding of the dynamical behavior in the vicinity of the Moon can be reached through the combination of analytical techniques and periodic orbits computation. A model that consists of a high degree, zonal truncation of the Selenopotential superimposed to the Earth mass-point attraction is used to explore the existence and orbital characteristics of long-lifetime orbits close to the Moon at any inclination. The averaging provides a global view on the frozen orbit's geometry and local descriptions of the averaged flow. But it also makes available the short-period terms of the transformation from mean to osculating elements. A refinement of the osculating elements by means of differential corrections allows to compute lunar repeat ground-trace orbits in high fidelity potentials without restricting to zonal models.

[1]  R. A. Cook,et al.  A high resolution lunar gravity field and predicted orbit behavior , 1993 .

[2]  I. M. Levitt Advances in the astronautical sciences: Vol. 6, edited by Horace Jacobs and Eric Burgess. 898 pages, diagrams, illustrations, 612 × 978 in. New York, The Macmillan Co., 1961. Price, $25.00 , 1961 .

[3]  J. Palacián,et al.  Analytical theory for spacecraft motion about Mercury , 2010 .

[4]  Prasun N. Desai,et al.  Lifetimes of Lunar Satellite Orbits , 1998 .

[5]  Y. Kozai Motion of a Lunar Orbiter , 1963 .

[6]  William Hamilton Jefferys,et al.  Equivalence of the perturbation theories of Hori and Deprit , 1970 .

[7]  W. Sjogren,et al.  Mascons: Lunar Mass Concentrations , 1968, Science.

[8]  W. Wiesel Relative Satellite Motion About an Oblate Planet , 2002 .

[9]  J. Pel,et al.  The High Road to Astronomical Photometric Precision: Differential Photometry , 2011 .

[10]  W. M. Kaula,et al.  Theory of Satellite Geodesy: Applications of Satellites to Geodesy , 2000 .

[11]  David Quinn,et al.  Lunar Frozen Orbits , 2006 .

[12]  R. Russell,et al.  Mission design through averaging of perturbed Keplerian systems: the paradigm of an Enceladus orbiter , 2010 .

[13]  Ryan P. Russell,et al.  Fast design of repeat ground track orbits in high-fidelity geopotentials , 2008 .

[14]  L. Healy,et al.  Painting the Phase Space Portrait of an Integrable Dynamical System , 1990, Science.

[15]  Todd A. Ely,et al.  Stable Constellations of Frozen Elliptical Inclined Lunar Orbits , 2005 .

[16]  Jiang Jingshan,et al.  Scientific objectives and payloads of Chang’E-1 lunar satellite , 2005 .

[17]  M. Lara,et al.  Lunar Analytical Theory for Polar Orbits in a 50-Degree Zonal Model Plus Third-Body Effect , 2009 .

[18]  Sylvio Ferraz-Mello,et al.  Canonical Perturbation Theories: Degenerate Systems and Resonance , 2007 .

[19]  Manabu Kato,et al.  The Japanese lunar mission SELENE: Science goals and present status , 2008 .

[20]  R. Cook,et al.  Orbit maintenance for low altitude near-circular lunar orbits , 1992 .

[21]  Narendra Bhandari,et al.  Chandrayaan-1: Science goals , 2005 .

[22]  David E. Smith,et al.  Lunar Reconnaissance Orbiter Overview: The Instrument Suite and Mission , 2007 .

[23]  M. Lara Simplified Equations for Computing Science Orbits Around Planetary Satellites , 2008 .

[24]  Andrea Milani,et al.  Orbit maintenance of a lunar polar orbiter , 1998 .

[25]  André Deprit,et al.  Canonical transformations depending on a small parameter , 1969 .

[26]  Martin Lara,et al.  Repeat Ground Track Orbits of the Earth Tesseral Problem as Bifurcations of the Equatorial Family of Periodic Orbits , 2003 .

[27]  A. Konopliv,et al.  Recent Gravity Models as a Result of the Lunar Prospector Mission , 2001 .

[28]  D. Scheeres,et al.  Stability Analysis of Planetary Satellite Orbiters: Application to the Europa Orbiter , 2001 .

[29]  Gen-Ichiro Hori,et al.  Theory of general perturbations with unspecified canonical variables , 1966 .

[30]  Daniel J. Scheeres,et al.  Design of Science Orbits About Planetary Satellites: Application to Europa , 2006 .

[31]  Ryan P. Russell,et al.  Long-Lifetime Lunar Repeat Ground Track Orbits , 2007 .