Liquid-Metal-Based Reconfigurable Components for RF Front Ends

In June 2013, the White House identified the development of broadband wireless networks as crucial for economic growth, specifically identifying innovations in spectrum sharing as being the key to relieving an expected spectrum crunch caused by the rapidly increasing number of Internet-connected devices, currently estimated at over 500 million.

[1]  Chang-Jin Kim,et al.  Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices , 2012, Journal of Microelectromechanical Systems.

[2]  B. Elamaran,et al.  A beam-steerer using reconfigurable PBG ground plane , 2000, 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017).

[3]  D. Peroulis,et al.  Non-Toxic Liquid-Metal 2-100 GHz MEMS Switch , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[4]  Sushmit Goswami,et al.  A Frequency-Agile RF Frontend Architecture for Multi-Band TDD Applications , 2014, IEEE Journal of Solid-State Circuits.

[5]  Theodore S. Rappaport,et al.  Millimeter-Wave Enhanced Local Area Systems: A High-Data-Rate Approach for Future Wireless Networks , 2014, IEEE Journal on Selected Areas in Communications.

[6]  Mu Chiao,et al.  Ultrasonic Bonding for MEMS Sealing and Packaging , 2009, IEEE Transactions on Advanced Packaging.

[7]  Dimitrios Peroulis,et al.  A 12–18 GHz electrostatically tunable liquid metal RF MEMS resonator with quality factor of 1400–1840 , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[8]  S. W. Cheung,et al.  Frequency reconfigurable slot antenna using metasurface , 2014, The 8th European Conference on Antennas and Propagation (EuCAP 2014).

[9]  Seungho Yu,et al.  Electrical, thermal, and species transport properties of liquid eutectic Ga-In and Ga-In-Sn from first principles. , 2014, The Journal of chemical physics.

[10]  Jonathan H. Dang,et al.  Liquid-metal-based phase shifter with reconfigurable EBG filling factor , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[11]  Zhouyue Pi,et al.  LTE-advanced modem design: challenges and perspectives , 2012, IEEE Communications Magazine.

[12]  Chang-Jin Kim,et al.  Microscale Liquid-Metal Switches—A Review , 2009, IEEE Transactions on Industrial Electronics.

[13]  K. Sarabandi,et al.  Design of reconfigurable slot antennas , 2005, IEEE Transactions on Antennas and Propagation.

[14]  Khalid Saif,et al.  Mobile Phone Antenna Design , 2015 .

[15]  S. S. Sabri,et al.  A review of Substrate Integrated Waveguide (SIW) bandpass filter based on different method and design , 2012, 2012 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE).

[16]  G. Mumcu,et al.  Frequency-Agile Bandpass Filters Using Liquid Metal Tunable Broadside Coupled Split Ring Resonators , 2013, IEEE Microwave and Wireless Components Letters.

[17]  Kamran Entesari,et al.  Tunable SIW bandpass filters with PIN diodes , 2010, The 40th European Microwave Conference.

[18]  J. D. Martinez,et al.  Varactor-loaded continuously tunable SIW resonator for reconfigurable filter design , 2011, 2011 41st European Microwave Conference.

[19]  Gabriel M. Rebeiz,et al.  The Search for a Reliable MEMS Switch , 2013, IEEE Microwave Magazine.

[20]  Z. Popovic,et al.  Tunable slot antenna using varactors and photodiodes , 2003, IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450).

[21]  Michael D. Dickey,et al.  Recapillarity: Electrochemically Controlled Capillary Withdrawal of a Liquid Metal Alloy from Microchannels , 2015 .

[22]  Aaron T. Ohta,et al.  Two-octave tunable liquid-metal monopole antenna , 2014 .

[23]  S. Tang,et al.  Liquid metal enabled pump , 2014, Proceedings of the National Academy of Sciences.

[24]  Gregory H. Huff,et al.  Microfluidically Switched Frequency-Reconfigurable Slot Antennas , 2013, IEEE Antennas and Wireless Propagation Letters.

[25]  M. Dickey,et al.  Influence of water on the interfacial behavior of gallium liquid metal alloys. , 2014, ACS applied materials & interfaces.

[26]  Gregory H. Huff,et al.  Frequency reconfigurable patch antenna using liquid metal as switching mechanism , 2013 .

[27]  K. Sakoda,et al.  Two-Step Formation of Gallium Droplets with High Controllability of Size and Density , 2011 .

[28]  J. E. Colgate,et al.  Preliminary investigation of micropumping based on electrical control of interfacial tension , 1990, IEEE Proceedings on Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots..

[29]  Aaron T. Ohta,et al.  A Liquid-Metal Monopole Array With Tunable Frequency, Gain, and Beam Steering , 2013, IEEE Antennas and Wireless Propagation Letters.

[30]  Tatsuo Itoh,et al.  Novel architectures for high-efficiency amplifiers for wireless applications , 1998 .

[31]  Dong-Weon Lee,et al.  Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor. , 2013, ACS applied materials & interfaces.

[32]  M. F. Ismail,et al.  A Compact Frequency-Reconfigurable Narrowband Microstrip Slot Antenna , 2012, IEEE Antennas and Wireless Propagation Letters.

[33]  Ke Wu,et al.  The substrate integrated circuits - a new concept for high-frequency electronics and optoelectronics , 2003, 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, 2003. TELSIKS 2003..

[34]  Hermetic integration of liquids in MEMS by room temperature, high-speed plugging of liquid-filled cavities at wafer level , 2011, 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems.

[35]  Wenqi Hu,et al.  A tunable low-pass filter using a liquid-metal reconfigurable periodic defected ground structure , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[36]  Michael D. Dickey,et al.  Giant and switchable surface activity of liquid metal via surface oxidation , 2014, Proceedings of the National Academy of Sciences.

[37]  Tatsuo Itoh,et al.  Novel 2-D photonic bandgap structure for microstrip lines , 1998 .

[38]  Liwei Lin,et al.  Microrelays With Bidirectional Electrothermal Electromagnetic Actuators and Liquid Metal Wetted Contacts , 2007, Journal of Microelectromechanical Systems.

[39]  Ke Wu,et al.  Review of substrate-integrated waveguide circuits and antennas , 2011 .

[40]  Chi-Yuk Chiu,et al.  Frequency-Reconfigurable Pixel Slot Antenna , 2012, IEEE Transactions on Antennas and Propagation.

[41]  C. Kim,et al.  Surface-tension-driven microactuation based on continuous electrowetting , 2000, Journal of Microelectromechanical Systems.

[42]  K. Sarabandi,et al.  A varactor-tuned dual-band slot antenna , 2006, IEEE Transactions on Antennas and Propagation.

[43]  Tatsuo Itoh,et al.  A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit , 1999 .

[44]  Jong Hyun Lee,et al.  Mercury-contact switching with gap-closing microcantilever , 1996, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[45]  Aaron T. Ohta,et al.  A tunable x-band substrate integrated waveguide cavity filter using reconfigurable liquid-metal perturbing posts , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[46]  Ke Wu,et al.  Substrate Integrated Waveguide Filter: Basic Design Rules and Fundamental Structure Features , 2014, IEEE Microwave Magazine.

[47]  H. Verheijen,et al.  REVERSIBLE ELECTROWETTING AND TRAPPING OF CHARGE : MODEL AND EXPERIMENTS , 1999, cond-mat/9908328.

[48]  Wenqi Hu,et al.  A liquid-metal reconfigurable double-stub tuner , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[49]  Wenqi Hu,et al.  Continuous Electrowetting of Non-toxic Liquid Metal for RF Applications , 2014, IEEE Access.

[50]  R. L. Haupt,et al.  Reconfigurable Antennas , 2013, IEEE Antennas and Propagation Magazine.

[51]  Nemai Chandra Karmakar,et al.  Development of phased array antenna by controlling the filling factor of periodic structure , 2007 .

[52]  Aaron T. Ohta,et al.  Rapid electrocapillary deformation of liquid metal with reversible shape retention , 2015 .

[53]  C. Kim,et al.  Electrowetting and electrowetting-on-dielectric for microscale liquid handling , 2002 .

[54]  Aaron T. Ohta,et al.  Frequency-tunable slot antenna using continuous electrowetting of liquid metal , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[55]  V Sekar,et al.  A 1.2–1.6-GHz Substrate-Integrated-Waveguide RF MEMS Tunable Filter , 2011, IEEE Transactions on Microwave Theory and Techniques.

[56]  L. Jofre,et al.  Circular Beam-Steering Reconfigurable Antenna With Liquid Metal Parasitics , 2012, IEEE Transactions on Antennas and Propagation.

[57]  G. Beni,et al.  Continuous electrowetting effect , 1982 .

[58]  D. Pozar A reciprocity method of analysis for printed slot and slot-coupled microstrip antennas , 1986 .

[59]  Aaron T. Ohta,et al.  A liquid-metal reconfigurable log-periodic balun , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).