Ku: a multifunctional protein involved in telomere maintenance.

[1]  H. Biessmann,et al.  The Ku Protein Complex Is Involved in Length Regulation of Drosophila Telomeres , 2005, Genetics.

[2]  L. Symington,et al.  EXO1-A multi-tasking eukaryotic nuclease. , 2004, DNA repair.

[3]  T. Fisher,et al.  Cell cycle-dependent regulation of yeast telomerase by Ku , 2004, Nature Structural &Molecular Biology.

[4]  M. Blasco,et al.  Role of Human Ku86 in Telomere Length Maintenance and Telomere Capping , 2004, Cancer Research.

[5]  Jun Qin,et al.  The Human Rap1 Protein Complex and Modulation of Telomere Length* , 2004, Journal of Biological Chemistry.

[6]  R. Wellinger,et al.  The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex. , 2004, Genes & development.

[7]  A. Smogorzewska,et al.  Regulation of telomerase by telomeric proteins. , 2004, Annual review of biochemistry.

[8]  K. Ríha,et al.  Molecular analysis of telomere fusions in Arabidopsis: multiple pathways for chromosome end‐joining , 2004, The EMBO journal.

[9]  K. Myung,et al.  Regulation of Telomere Length and Suppression of Genomic Instability in Human Somatic Cells by Ku86 , 2004, Molecular and Cellular Biology.

[10]  Stephen P. Jackson,et al.  A means to a DNA end: the many roles of Ku , 2004, Nature Reviews Molecular Cell Biology.

[11]  A. Bertuch,et al.  EXO1 contributes to telomere maintenance in both telomerase-proficient and telomerase-deficient Saccharomyces cerevisiae. , 2004, Genetics.

[12]  Florence Hediger,et al.  Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins , 2004, The EMBO journal.

[13]  S. Jackson,et al.  Separation-of-function Mutants of Yeast Ku80 Reveal a Yku80p-Sir4p Interaction Involved in Telomeric Silencing* , 2004, Journal of Biological Chemistry.

[14]  E. Gilson,et al.  RPA regulates telomerase action by providing Est1p access to chromosome ends , 2004, Nature Genetics.

[15]  G. Cross,et al.  Telomere length regulation and transcriptional silencing in KU80-deficient Trypanosoma brucei. , 2004, Nucleic acids research.

[16]  M. Mateyak,et al.  Getting to the end: telomerase access in yeast and humans , 2003, Nature Reviews Molecular Cell Biology.

[17]  A. Bertuch,et al.  The Ku Heterodimer Performs Separable Activities at Double-Strand Breaks and Chromosome Termini , 2003, Molecular and Cellular Biology.

[18]  D. Gottschling,et al.  Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. , 2003, Genes & development.

[19]  A. Matsuura,et al.  Fission yeast Rhp51 is required for the maintenance of telomere structure in the absence of the Ku heterodimer. , 2003, Nucleic acids research.

[20]  N. Grandin,et al.  The Rad51 Pathway of Telomerase-Independent Maintenance of Telomeres Can Amplify TG1-3 Sequences in yku and cdc13 Mutants of Saccharomyces cerevisiae , 2003, Molecular and Cellular Biology.

[21]  E. Blackburn,et al.  Telomerase and ATM/Tel1p protect telomeres from nonhomologous end joining. , 2003, Molecular cell.

[22]  F. Ishikawa,et al.  Telomeric DNA Ends Are Essential for the Localization of Ku at Telomeres in Fission Yeast* , 2003, The Journal of Biological Chemistry.

[23]  P. Jarvis,et al.  Chromatin Silencing: RNA in the Driving Seat , 2003, Current Biology.

[24]  K. Ríha,et al.  Ku is required for telomeric C-rich strand maintenance but not for end-to-end chromosome fusions in Arabidopsis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Susan M. Gasser,et al.  Live Imaging of Telomeres yKu and Sir Proteins Define Redundant Telomere-Anchoring Pathways in Yeast , 2002, Current Biology.

[26]  J. Shay,et al.  Human Ku70/80 Associates Physically with Telomerase through Interaction with hTERT* , 2002, The Journal of Biological Chemistry.

[27]  S. Teng,et al.  Involvement of Replicative Polymerases, Tel1p, Mec1p, Cdc13p, and the Ku Complex in Telomere-Telomere Recombination , 2002, Molecular and Cellular Biology.

[28]  S. Teng,et al.  Est1p As a Cell Cycle-Regulated Activator of Telomere-Bound Telomerase , 2002, Science.

[29]  D. Lydall,et al.  EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. , 2002, Genes & development.

[30]  H. van Attikum,et al.  Increased telomere length and hypersensitivity to DNA damaging agents in an Arabidopsis KU70 mutant. , 2002, Nucleic acids research.

[31]  M. McIntosh,et al.  A quantitative assay for telomere protection in Saccharomyces cerevisiae. , 2002, Genetics.

[32]  N. Robinson,et al.  Ku Is Important for Telomere Maintenance, but Not for Differential Expression of Telomeric VSG Genes, in African Trypanosomes* , 2002, The Journal of Biological Chemistry.

[33]  K. Ríha,et al.  Telomere length deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis mutants deficient in Ku70 , 2002, The EMBO journal.

[34]  J. Cigudosa,et al.  Mammalian Ku86 mediates chromosomal fusions and apoptosis caused by critically short telomeres , 2002, The EMBO journal.

[35]  R. Wellinger,et al.  Maintenance of Double-Stranded Telomeric Repeats as the Critical Determinant for Cell Viability in Yeast Cells Lacking Ku , 2002, Molecular and Cellular Biology.

[36]  T. Cech,et al.  Essential Regions of Saccharomyces cerevisiae Telomerase RNA: Separate Elements for Est1p and Est2p Interaction , 2002, Molecular and Cellular Biology.

[37]  W. Tham,et al.  Transcriptional silencing at Saccharomyces telomeres: implications for other organisms , 2002, Oncogene.

[38]  E. Hendrickson,et al.  Ku86 is essential in human somatic cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M. Resnick,et al.  Differential suppression of DNA repair deficiencies of Yeast rad50, mre11 and xrs2 mutants by EXO1 and TLC1 (the RNA component of telomerase). , 2002, Genetics.

[40]  J. Walker,et al.  Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair , 2001, Nature.

[41]  M. Hande,et al.  Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells , 2001, Current Biology.

[42]  P. Silver,et al.  Localization of yeast telomeres to the nuclear periphery is separable from transcriptional repression and telomere stability functions. , 2001, Molecular cell.

[43]  R. Kolodner,et al.  Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae , 2001, Nature.

[44]  S. Jackson,et al.  Telomerase subunit overexpression suppresses telomere‐specific checkpoint activation in the yeast yku80 mutant , 2001, EMBO reports.

[45]  R. Kolodner,et al.  Suppression of Spontaneous Chromosomal Rearrangements by S Phase Checkpoint Functions in Saccharomyces cerevisiae , 2001, Cell.

[46]  P. Jeggo,et al.  Novel functional requirements for non‐homologous DNA end joining in Schizosaccharomyces pombe , 2001, The EMBO journal.

[47]  D. Gottschling,et al.  The function of a stem-loop in telomerase RNA is linked to the DNA repair protein Ku , 2001, Nature Genetics.

[48]  Y. Mao,et al.  hTERT can function with rabbit telomerase RNA: regulation of gene expression and attenuation of apoptosis. , 2000, Biochemical and biophysical research communications.

[49]  M. Hande,et al.  Ku acts in a unique way at the mammalian telomere to prevent end joining. , 2000, Genes & development.

[50]  C. Damon,et al.  Cdc13 Cooperates with the Yeast Ku Proteins and Stn1 To Regulate Telomerase Recruitment , 2000, Molecular and Cellular Biology.

[51]  P. Baumann,et al.  Protection of telomeres by the Ku protein in fission yeast. , 2000, Molecular biology of the cell.

[52]  S. Lee,et al.  Interaction of human Ku70 with TRF2 , 2000, FEBS letters.

[53]  M. Blasco,et al.  Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G‐strand overhang , 2000, EMBO reports.

[54]  Jin-Qiu Zhou,et al.  Pif1p helicase, a catalytic inhibitor of telomerase in yeast. , 2000, Science.

[55]  T. Hughes,et al.  The Est3 protein is a subunit of yeast telomerase , 2000, Current Biology.

[56]  B. Futcher,et al.  The Est1 Subunit of Yeast Telomerase Binds the Tlc1 Telomerase RNA , 2000, Molecular and Cellular Biology.

[57]  A. Friedl,et al.  Subtelomeric repeat amplification is associated with growth at elevated temperature in yku70 mutants of Saccharomyces cerevisiae. , 2000, Genetics.

[58]  N. Tuteja,et al.  Ku Autoantigen: A Multifunctional DNA-Binding Protein , 2000, Critical reviews in biochemistry and molecular biology.

[59]  S. Teng,et al.  Telomere-Telomere Recombination Is an Efficient Bypass Pathway for Telomere Maintenance in Saccharomyces cerevisiae , 1999, Molecular and Cellular Biology.

[60]  E. Blackburn,et al.  Ku is associated with the telomere in mammals. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[61]  D. Shore,et al.  Yeast Ku protein plays a direct role in telomeric silencing and counteracts inhibition by Rif proteins , 1999, Current Biology.

[62]  R. Kolodner,et al.  Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants , 1999, Nature Genetics.

[63]  T. de Lange,et al.  Ku Binds Telomeric DNA in Vitro * , 1999, The Journal of Biological Chemistry.

[64]  Sophie G. Martin,et al.  Relocalization of Telomeric Ku and SIR Proteins in Response to DNA Strand Breaks in Yeast , 1999, Cell.

[65]  J. Stavenhagen,et al.  Yeast telomeres exert a position effect on recombination between internal tracts of yeast telomeric DNA. , 1998, Genes & development.

[66]  D. Gottschling,et al.  Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. , 1998, Genetics.

[67]  J. Haber,et al.  Saccharomyces Ku70, Mre11/Rad50, and RPA Proteins Regulate Adaptation to G2/M Arrest after DNA Damage , 1998, Cell.

[68]  Jian Li,et al.  The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities , 1998, Current Biology.

[69]  Edward J. Louis,et al.  Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres , 1998, Current Biology.

[70]  James E. Haber,et al.  Telomere maintenance is dependent on activities required for end repair of double-strand breaks , 1998, Current Biology.

[71]  R. Wellinger,et al.  Yeast Ku as a regulator of chromosomal DNA end structure. , 1998, Science.

[72]  S. Jackson,et al.  Components of the Ku‐dependent non‐homologous end‐joining pathway are involved in telomeric length maintenance and telomeric silencing , 1998, The EMBO journal.

[73]  E. Blackburn,et al.  Functionally interacting telomerase RNAs in the yeast telomerase complex. , 1997, Genes & development.

[74]  J. Shay,et al.  Normal human chromosomes have long G-rich telomeric overhangs at one end. , 1997, Genes & development.

[75]  J. Kato,et al.  Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae , 1997, Nature.

[76]  S. Jackson,et al.  Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double‐strand break repair , 1997, The EMBO journal.

[77]  R. Wellinger,et al.  The terminal DNA structure of mammalian chromosomes , 1997, The EMBO journal.

[78]  D. Rio,et al.  DNA double-strand-break sensitivity, DNA replication, and cell cycle arrest phenotypes of Ku-deficient Saccharomyces cerevisiae. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[79]  S. Jackson,et al.  Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. , 1996, Nucleic acids research.

[80]  R. Wellinger,et al.  Cell cycle-regulated generation of single-stranded G-rich DNA in the absence of telomerase. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[81]  E. Winnacker,et al.  HDF2, the Second Subunit of the Ku Homologue from Saccharomyces cerevisiae * , 1996, The Journal of Biological Chemistry.

[82]  H. Scherthan,et al.  The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae , 1996, The Journal of cell biology.

[83]  R. Wellinger,et al.  Evidence for a New Step in Telomere Maintenance , 1996, Cell.

[84]  T. Petes,et al.  The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. , 1996, Nucleic acids research.

[85]  E. Louis,et al.  The chromosome ends of Saccharomyces cerevisiae , 1995, Yeast.

[86]  Jing-Jer Lin,et al.  An in vitro assay for saccharomyces telomerase requires EST1 , 1995, Cell.

[87]  Andreas Hecht,et al.  Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: A molecular model for the formation of heterochromatin in yeast , 1995, Cell.

[88]  D. Gottschling,et al.  TLC1: template RNA component of Saccharomyces cerevisiae telomerase. , 1994, Science.

[89]  V. Schulz,et al.  The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation , 1994, Cell.

[90]  R. Wellinger,et al.  Origin activation and formation of single-strand TG1-3 tails occur sequentially in late S phase on a yeast linear plasmid , 1993, Molecular and cellular biology.

[91]  E. Winnacker,et al.  A putative homologue of the human autoantigen Ku from Saccharomyces cerevisiae. , 1993, The Journal of biological chemistry.

[92]  E. Blackburn,et al.  An alternative pathway for yeast telomere maintenance rescues est1− senescence , 1993, Cell.

[93]  R. Wellinger,et al.  Saccharomyces telomeres acquire single-strand TG1–3 tails late in S phase , 1993, Cell.

[94]  Oscar M. Aparicio,et al.  Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae , 1991, Cell.

[95]  T. Mimori,et al.  Characterization of a high molecular weight acidic nuclear protein recognized by autoantibodies in sera from patients with polymyositis-scleroderma overlap. , 1981, The Journal of clinical investigation.