Fast Eigenpairs Computation with Operator Adapted Wavelets and Hierarchical Subspace Correction
暂无分享,去创建一个
[1] Fei Xue,et al. Preconditioned Eigensolvers for Large-Scale Nonlinear Hermitian Eigenproblems with Variational Characterizations. II. Interior Eigenvalues , 2015, SIAM J. Sci. Comput..
[2] W. Hackbusch,et al. A fast iterative method for solving poisson’s equation in a general region , 1978 .
[3] Marcel Filoche,et al. Effective Confining Potential of Quantum States in Disordered Media. , 2015, Physical review letters.
[4] G. Beylkin,et al. A Multiresolution Strategy for Numerical Homogenization , 1995 .
[5] Jinchao Xu,et al. A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..
[6] Hehu Xie,et al. A type of multilevel method for the Steklov eigenvalue problem , 2014 .
[7] Y. Saad,et al. Numerical Methods for Large Eigenvalue Problems , 2011 .
[8] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[9] A. Brandt. Multi-level adaptive technique (MLAT) for fast numerical solution to boundary value problems , 1973 .
[10] Ziyun Zhang,et al. A Fast Hierarchically Preconditioned Eigensolver Based On Multiresolution Matrix Decomposition , 2019, Multiscale Model. Simul..
[11] E. D'yakonov,et al. Minimization of the computational labor in determining the first eigenvalues of differential operators , 1980 .
[12] Houman Owhadi,et al. Multigrid with Rough Coefficients and Multiresolution Operator Decomposition from Hierarchical Information Games , 2015, SIAM Rev..
[13] Hehu Xie,et al. A multi-level correction scheme for eigenvalue problems , 2011, Math. Comput..
[14] Hehu Xie,et al. A full multigrid method for eigenvalue problems , 2016, J. Comput. Phys..
[15] B. Engquist,et al. Wavelet-Based Numerical Homogenization , 1998 .
[16] Andrew V. Knyazev,et al. Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..
[17] Walter Kohn,et al. Analytic Properties of Bloch Waves and Wannier Functions , 1959 .
[18] Daniel Kressner,et al. An indefinite variant of LOBPCG for definite matrix pencils , 2014, Numerical Algorithms.
[19] Houman Owhadi,et al. De-noising by thresholding operator adapted wavelets , 2018, Statistics and Computing.
[20] Maxim A. Olshanskii,et al. Iterative Methods for Linear Systems - Theory and Applications , 2014 .
[21] Charles A. Micchelli,et al. A Survey of Optimal Recovery , 1977 .
[22] Daniel Peterseim,et al. Localization of elliptic multiscale problems , 2011, Math. Comput..
[23] I. Babuska,et al. Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .
[24] Daniel Peterseim,et al. Computation of eigenvalues by numerical upscaling , 2012, Numerische Mathematik.
[25] A. Aspect,et al. Direct observation of Anderson localization of matter waves in a controlled disorder , 2008, Nature.
[26] H. Owhadi,et al. Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization , 2012, 1212.0812.
[27] H. Owhadi,et al. Metric‐based upscaling , 2007 .
[28] S. C. Brenner,et al. C 0 IPG Method for Biharmonic Eigenvalue Problems , 2014 .
[29] Houman Owhadi,et al. Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization , 2019 .
[30] I. Oseledets,et al. Calculating vibrational spectra of molecules using tensor train decomposition. , 2016, The Journal of chemical physics.
[31] Hehu Xie,et al. A full multigrid method for nonlinear eigenvalue problems , 2015, 1502.04657.
[32] Ming Gu,et al. A Robust and Efficient Implementation of LOBPCG , 2018, SIAM J. Sci. Comput..
[33] Gregory H. Wannier,et al. Dynamics of Band Electrons in Electric and Magnetic Fields , 1962 .
[34] P. Anderson. Absence of Diffusion in Certain Random Lattices , 1958 .
[35] Xia Ji,et al. A Multi-Level Mixed Element Method for the Eigenvalue Problem of Biharmonic Equation , 2018, J. Sci. Comput..
[36] I. Babuska,et al. Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .
[37] Hehu Xie,et al. A Multilevel Correction Type of Adaptive Finite Element Method for Eigenvalue Problems , 2012, SIAM J. Sci. Comput..
[38] D. Sorensen. IMPLICITLY RESTARTED ARNOLDI/LANCZOS METHODS FOR LARGE SCALE EIGENVALUE CALCULATIONS , 1996 .
[39] Florian Schäfer,et al. Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity , 2017, Multiscale Model. Simul..
[40] Tony F. Chan,et al. An Energy-minimizing Interpolation for Robust Multigrid Methods , 1999, SIAM J. Sci. Comput..
[41] Andrew V. Knyazev,et al. A subspace preconditioning algorithm for eigenvector/eigenvalue computation , 1995, Adv. Comput. Math..
[42] Zhaojun Bai,et al. Minimization Principles for the Linear Response Eigenvalue Problem I: Theory , 2012, SIAM J. Matrix Anal. Appl..
[43] A. Knyazev,et al. Efficient solution of symmetric eigenvalue problems using multigridpreconditioners in the locally optimal block conjugate gradient method , 2001 .
[44] N. Marzari,et al. Maximally-localized Wannier Functions: Theory and Applications , 2011, 1112.5411.
[45] Q. Lin,et al. A MULTILEVEL CORRECTION TYPE OF ADAPTIVE FINITE ELEMENT METHOD FOR STEKLOV EIGENVALUE PROBLEMS , 2012 .
[46] G. Strang,et al. An Analysis of the Finite Element Method , 1974 .
[47] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[48] Jun-zhi Cui,et al. Asymptotic expansions and numerical algorithms of eigenvalues and eigenfunctions of the Dirichlet problem for second order elliptic equations in perforated domains , 2004, Numerische Mathematik.
[49] Daniel Peterseim,et al. Quantitative Anderson localization of Schrödinger eigenstates under disorder potentials , 2018, Mathematical Models and Methods in Applied Sciences.
[50] Sushant Sachdeva,et al. Approximate Gaussian Elimination for Laplacians - Fast, Sparse, and Simple , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).
[51] F. Chatelin. Spectral approximation of linear operators , 2011 .
[52] Chao Yang,et al. A projected preconditioned conjugate gradient algorithm for computing many extreme eigenpairs of a Hermitian matrix , 2014, J. Comput. Phys..
[53] Houman Owhadi,et al. Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients , 2016, J. Comput. Phys..
[54] Andrew Knyazev,et al. Preconditioned Eigensolvers - an Oxymoron? , 1998 .
[55] Andrew Knyazev. Recent implementations, applications, and extensions of the Locally Optimal Block Preconditioned Conjugate Gradient method (LOBPCG) , 2017, ArXiv.
[56] Fei Xue,et al. Preconditioned eigensolvers for large-scale nonlinear Hermitian eigenproblems with variational characterizations. I. Extreme eigenvalues , 2016, Math. Comput..
[57] Houman Owhadi,et al. Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis , 2017, 1703.10761.
[58] Hehu Xie,et al. A full multigrid method for eigenvalue problems , 2014, J. Comput. Phys..
[59] Ralf Kornhuber,et al. Numerical Homogenization of Elliptic Multiscale Problems by Subspace Decomposition , 2016, Multiscale Model. Simul..
[60] G. Wannier. The Structure of Electronic Excitation Levels in Insulating Crystals , 1937 .
[61] Xin Wang,et al. Multiscale finite element algorithm of the eigenvalue problems for the elastic equations in composite materials , 2009 .
[62] Yalchin Efendiev,et al. An adaptive GMsFEM for high-contrast flow problems , 2013, J. Comput. Phys..
[63] H. Owhadi,et al. Flux Norm Approach to Finite Dimensional Homogenization Approximations with Non-Separated Scales and High Contrast , 2009, 0901.1463.
[64] Ralf Kornhuber,et al. An analysis of a class of variational multiscale methods based on subspace decomposition , 2016, Math. Comput..