The p16INK4a/CDKN2A tumor suppressor and its relatives.

[1]  Ken Chen,et al.  The Ink4a Tumor Suppressor Gene Product, p19Arf, Interacts with MDM2 and Neutralizes MDM2's Inhibition of p53 , 1998, Cell.

[2]  Yue Xiong,et al.  ARF Promotes MDM2 Degradation and Stabilizes p53: ARF-INK4a Locus Deletion Impairs Both the Rb and p53 Tumor Suppression Pathways , 1998, Cell.

[3]  G. Peters,et al.  Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts , 1998, Current Biology.

[4]  Philip Smith,et al.  Retinoblastoma and p16 proteins in mammary carcinoma: Their relationship to cyclin D1 and histopathological parameters , 1998, International journal of cancer.

[5]  D. Stoppa-Lyonnet,et al.  Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group. , 1998, Human molecular genetics.

[6]  M. Haas,et al.  Independent induction of senescence by p16INK4a and p21CIP1 in spontaneously immortalized human fibroblasts. , 1998, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[7]  G. Peters,et al.  Ankyrin for clues about the function 0fp16INK4a , 1998, Nature Structural Biology.

[8]  H. J. Kim,et al.  Tumor suppressor p16INK4A: determination of solution structure and analyses of its interaction with cyclin-dependent kinase 4. , 1998, Molecular cell.

[9]  R. Medema,et al.  p21waf1 can block cells at two points in the cell cycle, but does not interfere with processive DNA-replication or stress-activated kinases , 1998, Oncogene.

[10]  Bernard Ducommun,et al.  p21 binding to PCNA causes G1 and G2 cell cycle arrest in p53-deficient cells , 1998, Oncogene.

[11]  K. Hemminki,et al.  Mutations in the CDKN2A ( p16INK4a ) gene in microdissected sporadic primary melanomas , 1998, International journal of cancer.

[12]  S. Srivastava,et al.  Effects of adenovirus-mediated p16INK4A expression on cell cycle arrest are determined by endogenous p16 and Rb status in human cancer cells , 1998, Oncogene.

[13]  L. Hengst,et al.  Effects of p21Cip1/Waf1 at Both the G1/S and the G2/M Cell Cycle Transitions: pRb Is a Critical Determinant in Blocking DNA Replication and in Preventing Endoreduplication , 1998, Molecular and Cellular Biology.

[14]  P. Pollock,et al.  Analysis of the CDKN2A, CDKN2B and CDK4 genes in 48 Australian melanoma kindreds , 1997, Oncogene.

[15]  N. Hayward,et al.  Low frequency of p16/CDKN2A methylation in sporadic melanoma: comparative approaches for methylation analysis of primary tumors. , 1997, Cancer research.

[16]  Richard A. Ashmun,et al.  Tumor Suppression at the Mouse INK4a Locus Mediated by the Alternative Reading Frame Product p19 ARF , 1997, Cell.

[17]  S. Miyoshi,et al.  p16INK4, pRB, p53 and cyclin D1 expression and hypermethylation of CDKN2 gene in thymoma and thymic carcinoma , 1997, International journal of cancer.

[18]  P. Pollock,et al.  CDKN2A mutation in a non‐FAMMM kindred with cancers at multiple sites results in a functionally abnormal protein , 1997, International journal of cancer.

[19]  O. Bernard,et al.  The human protein p19ARF is not detected in hemopoietic human cell lines that abundantly express the alternative β transcript of the p16INK4a/MTS1 gene , 1997, Oncogene.

[20]  D. Bishop,et al.  Germline mutations of the CDKN2 gene in UK melanoma families. , 1997, Human molecular genetics.

[21]  P. Pollock,et al.  CDKN2A/p16 is inactivated in most melanoma cell lines. , 1997, Cancer research.

[22]  L. Chin,et al.  Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. , 1997, Genes & development.

[23]  F. Zindy,et al.  Expression of INK4 inhibitors of cyclin D-dependent kinases during mouse brain development. , 1997, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[24]  Ernest D. Laue,et al.  Structure of the cyclin-dependent kinase inhibitor p19Ink4d , 1997, Nature.

[25]  W. Cavenee,et al.  Functional analysis of wild-type and malignant glioma derived CDKN2Aβ alleles: Evidence for an RB-independent growth suppressive pathway , 1997, Oncogene.

[26]  W. Yung,et al.  Adenovirus-mediated p16/CDKN2 gene transfer suppresses glioma invasion in vitro , 1997, Oncogene.

[27]  M. Volm,et al.  Prognostic implications of cyclins (D1, E, A), cyclin‐dependent kinases (CDK2, CDK4) and tumor‐suppressor genes (pRb, p16INK4A) in childhood acute lymphoblastic leukemia , 1997, International journal of cancer.

[28]  X. Liu,et al.  G1 control gene status is frequently altered in resectable non‐small cell lung cancer , 1997, International journal of cancer.

[29]  W. Hiddemann,et al.  Alterations of the cyclin D1/p16-pRB pathway in mantle cell lymphoma. , 1997, Cancer research.

[30]  P. Kleihues,et al.  Hemizygous or homozygous deletion of the chromosomal region containing the p16INK4a gene is associated with amplification of the EGF receptor gene in glioblastomas , 1997, International journal of cancer.

[31]  A. Franchi,et al.  Cumulative prognostic value of p16/CDKN2 and p53 oncoprotein expression in premalignant laryngeal lesions. , 1997, Journal of the National Cancer Institute.

[32]  G. Peters,et al.  Accumulation of p16INK4a in mouse fibroblasts as a function of replicative senescence and not of retinoblastoma gene status , 1997, Oncogene.

[33]  G. Mann,et al.  Differential expression of p16INK4a and p16β transcripts in B-lymphoblastoid cells from members of hereditary melanoma families without CDKN2A exon mutations , 1997, Oncogene.

[34]  M. Nistér,et al.  Induction of senescence in human malignant glioma cells by p16INK4A , 1997, Oncogene.

[35]  M. Laiho,et al.  Cloning and characterization of p10, an alternatively spliced form of p15 cyclin-dependent kinase inhibitor. , 1997, Cancer research.

[36]  F. Zindy,et al.  Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging , 1997, Oncogene.

[37]  H. Koeffler,et al.  The p19INK4D Cyclin dependent kinase inhibitor gene is altered in osteosarcoma , 1997, Oncogene.

[38]  G. Thomas,et al.  Loss of heterozygosity on chromosome 9 and p16 (MTS1, CDKN2) gene mutations in esophageal cancers , 1997, International journal of cancer.

[39]  N. Hayward,et al.  Restoration of CDKN2A into melanoma cells induces morphologic changes and reduction in growth rate but not anchorage-independent growth reversal. , 1997, The Journal of investigative dermatology.

[40]  D. Wong,et al.  p16INK4a promoter is hypermethylated at a high frequency in esophageal adenocarcinomas. , 1997, Cancer research.

[41]  W. Farrell,et al.  Chromosome 9p deletions in invasive and noninvasive nonfunctional pituitary adenomas: the deleted region involves markers outside of the MTS1 and MTS2 genes. , 1997, Cancer research.

[42]  Y. Collan,et al.  Loss of expression of the p16INK4/CDKN2 gene in cutaneous malignant melanoma correlates with tumor cell proliferation and invasive stage , 1997, International journal of cancer.

[43]  C. Moskaluk,et al.  p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. , 1997, Cancer research.

[44]  P. Carroll,et al.  Frequent homozygous deletion of cyclin‐dependent kinase inhibitor 2 (MTS1, p16) in superficial bladder cancer detected by fluorescence in situ hybridization , 1997, Genes, chromosomes & cancer.

[45]  J. Massagué,et al.  Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-β in cells lacking the CDK inhibitor p15 , 1997, Nature.

[46]  M. Inganäs,et al.  Screening of germline mutations in the CDKN2A and CDKN2B genes in Swedish families with hereditary cutaneous melanoma. , 1997, Journal of the National Cancer Institute.

[47]  M. Lung,et al.  p16 tumor suppressor gene mutations in Chinese esophageal carcinomas in Hong Kong. , 1997, Cancer letters.

[48]  M. Oren,et al.  Mdm2 promotes the rapid degradation of p53 , 1997, Nature.

[49]  Stephen N. Jones,et al.  Regulation of p53 stability by Mdm2 , 1997, Nature.

[50]  S. Goodman,et al.  Tumor-suppressive pathways in pancreatic carcinoma. , 1997, Cancer research.

[51]  M. Tucker,et al.  Affected members of melanoma‐prone families with linkage to 9p21 but lacking mutations in CDKN2A do not harbor mutations in the coding regions of either CDKN2B or p19ARF , 1997 .

[52]  Y. Matsumura,et al.  Increase in radiation sensitivity of human malignant melanoma cells by expression of wild-type p16 gene. , 1997, Cancer letters.

[53]  P. Yaswen,et al.  Transforming growth factor beta stabilizes p15INK4B protein, increases p15INK4B-cdk4 complexes, and inhibits cyclin D1-cdk4 association in human mammary epithelial cells , 1997, Molecular and cellular biology.

[54]  H. Koeffler,et al.  Molecular analysis of the INK4 family of genes in prostate carcinomas. , 1997, The Journal of urology.

[55]  T. Enomoto,et al.  Alteration of p16 and p15 genes in common epithelial ovarian tumors , 1997, International journal of cancer.

[56]  M. Ng,et al.  Frequent hypermethylation of p16 and p15 genes in multiple myeloma. , 1997, Blood.

[57]  M. Malumbres,et al.  Inactivation of the cyclin-dependent kinase inhibitor p15INK4b by deletion and de novo methylation with independence of p16INK4a alterations in murine primary T-cell lymphomas , 1997, Oncogene.

[58]  S. Lowe,et al.  Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a , 1997, Cell.

[59]  Y. Kubo,et al.  Mutations of the INK4a locus in squamous cell carcinomas of human skin. , 1997, Biochemical and biophysical research communications.

[60]  J. Benítez,et al.  Hypermethylation of a 5′ CpG island of p16 is a frequent event in non-Hodgkin’s lymphoma , 1997, Leukemia.

[61]  J. Bartek,et al.  Adenovirally transferred p16INK4/CDKN2 and p53 genes cooperate to induce apoptotic tumor cell death , 1997, Nature Medicine.

[62]  P. Dirks,et al.  Cyclin and Cyclin‐Dependent Kinase Expression in Human Astrocytoma Cell Lines , 1997, Journal of neuropathology and experimental neurology.

[63]  J. Herman,et al.  Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. , 1997, Cancer research.

[64]  J. Herman,et al.  Frequent aberrant methylation of p16INK4a in primary rat lung tumors , 1997, Molecular and cellular biology.

[65]  P. García-Miguel,et al.  Mutational analysis of the p16 gene in human neuroblastomas , 1997, Molecular carcinogenesis.

[66]  M. Link,et al.  Frequent and selective methylation of p15 and deletion of both p15 and p16 in T-cell acute lymphoblastic leukemia. , 1997, Cancer research.

[67]  K. Jeang,et al.  Human T-cell leukemia virus type 1 Tax releases cell cycle arrest induced by p16INK4a , 1997, Journal of virology.

[68]  C. Bartram,et al.  Molecular analysis of the cyclin-dependent kinase inhibitor genes, p15, p16, p18 and p19 in the myelodysplastic syndromes. , 1997, Leukemia research.

[69]  N. Wake,et al.  Alterations of the p16INK4A gene in human ovarian cancers , 1997, Molecular carcinogenesis.

[70]  O. Yoshida,et al.  Concomitant Presence of p16/Cyclin‐dependent Kinase 4 and Cyclin D/Cyclin‐dependent Kinase 4 omplexes in LNCaP Prostatic Cancer Cell Line , 1997, Japanese journal of cancer research : Gann.

[71]  A. Feinberg,et al.  Lack of imprinting of three human cyclin-dependent kinase inhibitor genes. , 1997, Cancer research.

[72]  B. Leggett,et al.  Frequency of mutation and deletion of the tumor suppressor gene CDKN2A (MTS1/p16) in hepatocellular carcinoma from an Australian population , 1997, Hepatology.

[73]  K. Shigemasa,et al.  p16 Overexpression: A Potential Early Indicator of Transformation in Ovarian Carcinoma , 1997, The Journal of the Society for Gynecologic Investigation: JSGI.

[74]  V. Álvarez,et al.  Mutation analysis of the p53, APC, and p16 genes in the Barrett's oesophagus, dysplasia, and adenocarcinoma. , 1997, Journal of clinical pathology.

[75]  J. Boyd,et al.  p16 (CDKN2/MTS1) gene deletions are rare in prostatic carcinomas in the United States and Japan. , 1997, The Journal of urology.

[76]  J. Yokota,et al.  Deletion map of chromosome 9 and p16 (CDKN2A) gene alterations in neuroblastoma. , 1997, Cancer research.

[77]  R. Maestro,et al.  p16/CDKN2 and CDK4 gene mutations in sporadic melanoma development and progression , 1997, International journal of cancer.

[78]  A. Olshan,et al.  Alterations of the p16 gene in head and neck cancer: frequency and association with p53, PRAD-1 and HPV , 1997, Oncogene.

[79]  M. Cummings,et al.  Increased expression of cyclin‐dependent kinase inhibitor 2 (CDKN2A) gene product P16 INK4A in ovarian cancer is associated with progression and unfavourable prognosis , 1997, International journal of cancer.

[80]  J. Massagué,et al.  The subcellular locations of p15(Ink4b) and p27(Kip1) coordinate their inhibitory interactions with cdk4 and cdk2. , 1997, Genes & development.

[81]  M. Imamura,et al.  Multiple types of aberrations in the p16 (INK4a) and the p15(INK4b) genes in 30 esophageal squamous‐cell‐carcinoma cell lines , 1997, International journal of cancer.

[82]  A. Levine p53, the Cellular Gatekeeper for Growth and Division , 1997, Cell.

[83]  W. Cavenee,et al.  Point mutations can inactivate in vitro and in vivo activities of p16INK4a/CDKN2A in human glioma , 1997, Oncogene.

[84]  G. Gaidano,et al.  Multigenetic lesions in infant acute leukaemias: correlations with ALL‐1 gene status , 1997, British journal of haematology.

[85]  K. Hemminki,et al.  Loss of heterozygosity and microsatellite instability in larynx cancer. , 1997, International journal of oncology.

[86]  J. Minna,et al.  Identification of three distinct tumor suppressor loci on the short arm of chromosome 9 in small cell lung cancer. , 1997, Cancer research.

[87]  A. Marchetti,et al.  Alterations of P16 (MTS1) in node‐positive non‐small cell lung carcinomas , 1997, The Journal of pathology.

[88]  H. Tsuda,et al.  Decreased expression of the p16/MTS1 gene without mutation is frequent in human urinary bladder carcinomas. , 1997, Japanese journal of clinical oncology.

[89]  R. Schneider-Stock,et al.  Loss of heterozygosity on chromosome 9q21 (p16 gene) uncommon in soft‐tissue sarcomas , 1997, Molecular carcinogenesis.

[90]  G. Landberg,et al.  Telomerase activity is associated with cell cycle deregulation in human breast cancer. , 1997, Cancer research.

[91]  K. Wills,et al.  Rb functions to inhibit apoptosis during myocyte differentiation. , 1997, Cancer research.

[92]  D. Grandér,et al.  Induction of Cip/Kip and Ink4 cyclin dependent kinase inhibitors by interferon-α in hematopoietic cell lines , 1997, Oncogene.

[93]  D. Quelle,et al.  Cancer-associated mutations at the INK4a locus cancel cell cycle arrest by p16INK4a but not by the alternative reading frame protein p19ARF. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[94]  R. Baumgartner,et al.  NMR structural characterization of the CDK inhibitor p19INK4d , 1997, FEBS letters.

[95]  H. W. Chang,et al.  Loss of expression of the p16 gene is frequent in malignant skin tumors. , 1997, Biochemical and biophysical research communications.

[96]  Carl W. Miller,et al.  Analysis of the p16INK4A, p15INK4B and p18INK4C genes in multiple myeloma , 1997, British journal of haematology.

[97]  K. Kitagawa,et al.  Increased Radiosensitivity of p16 Gene‐deleted Human Glioma Cells after Transfection with Wild‐type p16 Gene , 1997, Japanese journal of cancer research : Gann.

[98]  M. Miwa,et al.  Inactivation of p16/CDKN2 and p15/MTS2 genes in different histological types and clinical stages of primary ovarian tumors , 1996, International journal of cancer.

[99]  H. Dosaka-akita,et al.  Altered p16INK4 and retinoblastoma protein status in non-small cell lung cancer: potential synergistic effect with altered p53 protein on proliferative activity. , 1996, Cancer research.

[100]  G. Capellá,et al.  Orthotopic xenografts of human pancreatic carcinomas acquire genetic aberrations during dissemination in nude mice. , 1996, Cancer research.

[101]  C. Sherr Cancer Cell Cycles , 1996, Science.

[102]  R. Kerbel,et al.  TGF-beta mediated G1 arrest in a human melanoma cell line lacking p15INK4B: evidence for cooperation between p21Cip1/WAF1 and p27Kip1. , 1996, Oncogene.

[103]  J. Bartek,et al.  The p16-cyclin D/Cdk4-pRb pathway as a functional unit frequently altered in melanoma pathogenesis. , 1996, Cancer research.

[104]  P. Chaubert,et al.  InformativeMspI polymorphism adjacent to exon 3 of thep16INK4(MTS1)gene , 1996 .

[105]  J. Bartek,et al.  The retinoblastoma protein pathway and the restriction point. , 1996, Current opinion in cell biology.

[106]  M. Ivan,et al.  Abnormalities of theP16INK4A gene in thyroid cancer cell lines , 1996 .

[107]  O. Olopade,et al.  Preferential loss of expression of p16(INK4a) rather than p19(ARF) in breast cancer. , 1996, Clinical cancer research : an official journal of the American Association for Cancer Research.

[108]  M. Tomonaga,et al.  Alterations of the cyclin-dependent kinase inhibitor p19 (INK4D) is rare in hematopoietic malignancies. , 1996, Leukemia.

[109]  D. Bostwick,et al.  Absence of p16/MTS1 gene mutations in human prostate cancer. , 1996, Carcinogenesis.

[110]  A. Okamoto,et al.  Molecular analysis of the cyclin‐dependent kinase inhibitor genes p15INK4b/MTS21, p16INK4/MTS1, p18 and pl9 in human cancer cell lines , 1996, International journal of cancer.

[111]  G. Hannon,et al.  Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[112]  B. Zhang,et al.  Defective Folding of Mutant p16INK4 Proteins Encoded by Tumor-derived Alleles* , 1996, The Journal of Biological Chemistry.

[113]  P. Heinzel,et al.  Mutations and polymorphisms in the p53, p21 and p16 genes in oral carcinomas of Indian betel quid chewers , 1996, International journal of cancer.

[114]  P. Meltzer,et al.  Refined mapping of 12q13-q15 amplicons in human malignant gliomas suggests CDK4/SAS and MDM2 as independent amplification targets. , 1996, Cancer research.

[115]  C. Cordon-Cardo,et al.  Establishment, characterization and drug sensitivity of four new human soft tissue sarcoma cell lines , 1996, International journal of cancer.

[116]  R. Nairn,et al.  A CDKN2-like polymorphism in Xiphophorus LG V is associated with UV-B-induced melanoma formation in platyfish-swordtail hybrids. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[117]  N. Pavletich,et al.  Structure of the p53 Tumor Suppressor Bound to the Ankyrin and SH3 Domains of 53BP2 , 1996, Science.

[118]  Y. Xiong,et al.  Lack of mutation in the cyclin-dependent kinase inhibitor, p19INK4d, in tumor-derived cell lines and primary tumors. , 1996, Oncogene.

[119]  Marshall W. Anderson,et al.  Homozygous codeletion and differential decreased expression of p15INK4b, p16INK4a-alpha and p16INK4a-beta in mouse lung tumor cells. , 1996, Oncogene.

[120]  Carissa A. Sanchez,et al.  Allelic loss of 9p21 and mutation of the CDKN2/p16 gene develop as early lesions during neoplastic progression in Barrett's esophagus. , 1996, Oncogene.

[121]  J. Roth,et al.  Inhibition of esophageal cancer proliferation by adenovirally mediated delivery of p16INK4. , 1996, Cancer gene therapy.

[122]  B. Quesnel,et al.  Transfer of p16inka/CDKN2 gene in leukaemic cell lines inhibits cell proliferation , 1996, British journal of haematology.

[123]  K. Chang,et al.  MTS1 gene mutations in archival oral squamous cell carcinomas. , 1996, Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology.

[124]  M. Bulyk,et al.  Loss of the p16INK4a and p15INK4b genes, as well as neighboring 9p21 markers, in sporadic melanoma. , 1996, Cancer research.

[125]  A. Kyritsis,et al.  Hypermethylation of the CpG island of p16/CDKN2 correlates with gene inactivation in gliomas. , 1996, Oncogene.

[126]  A. Olshan,et al.  Familial tumor syndrome associated with a germline nonfunctional p16INK4a allele. , 1996, Journal of the National Cancer Institute.

[127]  M. Diccianni,et al.  Frequent deletion in the methylthioadenosine phosphorylase gene in T-cell acute lymphoblastic leukemia: strategies for enzyme-targeted therapy. , 1996, Blood.

[128]  J. Lapointe,et al.  A p18 mutant defective in CDK6 binding in human breast cancer cells. , 1996, Cancer research.

[129]  M. Rhyu,et al.  Microsatellite instability-associated mutations associate preferentially with the intestinal type of primary gastric carcinomas in a high-risk population. , 1996, Cancer research.

[130]  J. Schalken,et al.  Homozygous deletions of p16INK4 occur frequently in bilharziasis‐associated bladder cancer , 1996, International journal of cancer.

[131]  K. Kunishio,et al.  Malignant astrocytomas with homozygous CDKN2/p16 gene deletions have higher Ki-67 proliferation indices. , 1996, Journal of neuropathology and experimental neurology.

[132]  A. Arnold,et al.  Loss of chromosome arm 9p DNA and analysis of the p16 and p15 cyclin-dependent kinase inhibitor genes in human parathyroid adenomas. , 1996, The Journal of clinical endocrinology and metabolism.

[133]  K. Anderson,et al.  A novel pre-B acute lymphoblastic leukemia cell line with chromosomal translocation between p16(INK4A)/p15(INK4B) tumor suppressor and immunoglobulin heavy chain genes: TGFbeta/IL-7 inhibitory signaling mechanism. , 1996, Leukemia.

[134]  Hsiu‐Po Wang,et al.  Intragenic Homozygous Deletions of MTS1 Gene in Gastric Cancer in Taiwan , 1996, Japanese journal of cancer research : Gann.

[135]  D. Franklin,et al.  Induction of p18INK4c and its predominant association with CDK4 and CDK6 during myogenic differentiation. , 1996, Molecular biology of the cell.

[136]  J. Foekens,et al.  Sporadic CDKN2 (MTS1/p16ink4) gene alterations in human ovarian tumours. , 1996, British Journal of Cancer.

[137]  M. Esumi,et al.  Activation but not inactivation of the MTS1 gene is associated with primary colorectal carcinomas. , 1996, Biochemical and biophysical research communications.

[138]  D. Sidransky,et al.  p16 and p16 beta are potent growth suppressors of head and neck squamous carcinoma cells in vitro. , 1996, Cancer research.

[139]  V P Collins,et al.  Human glioblastomas with no alterations of the CDKN2A (p16INK4A, MTS1) and CDK4 genes have frequent mutations of the retinoblastoma gene. , 1996, Oncogene.

[140]  J. Herman,et al.  Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[141]  T. Kinoshita,et al.  The CDKN2 gene alterations in various types of adult T‐cell leukaemia , 1996, British journal of haematology.

[142]  H. Antoniades,et al.  Cell-cycle regulator cyclin D1 mRNA and protein overexpression occurs in primary malignant gliomas. , 1996, International journal of oncology.

[143]  S. Hirohashi,et al.  Inactivation of p16INK4 in hepatocellular carcinoma , 1996, Hepatology.

[144]  T. Norberg,et al.  Genes involved in cell cycle G1 checkpoint control are frequently mutated in human melanoma metastases. , 1996, British Journal of Cancer.

[145]  H. Koga,et al.  A Comparative Study of Glioma Cell Lines for p16, p15, p53 and p21 Gene Alterations , 1996, Japanese journal of cancer research : Gann.

[146]  E. Healy,et al.  Infrequent mutation of p16INK4 in sporadic melanoma. , 1996, The Journal of investigative dermatology.

[147]  S. Nishizuka,et al.  Inactivation of the CDKN2 gene by homozygous deletion and de novo methylation is associated with advanced stage esophageal squamous cell carcinoma. , 1996, Cancer research.

[148]  R. Fairman,et al.  Structural characterization of the tumor suppressor p16, an ankyrin‐like repeat protein , 1996, Protein science : a publication of the Protein Society.

[149]  M. Beckmann,et al.  Frequent allele loss on 9p21–22 defines a smallest common region in the vicinity of the CDKN2 gene in sporadic breast cancer , 1996, Genes, chromosomes & cancer.

[150]  J. Bartek,et al.  High frequency of p16 (CDKN2/MTS-1/INK4A) inactivation in head and neck squamous cell carcinoma. , 1996, Cancer research.

[151]  K. Isselbacher,et al.  Prevalence of germ-line mutations in p16, p19ARF, and CDK4 in familial melanoma: analysis of a clinic-based population. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[152]  D. Niewoehner,et al.  Rb and p16INK4a expression in resected non-small cell lung tumors. , 1996, Cancer research.

[153]  M. Stanley,et al.  Association of CDKN2A/p16INK4A with human head and neck keratinocyte replicative senescence: relationship of dysfunction to immortality and neoplasia. , 1996, Oncogene.

[154]  H. Yokozaki,et al.  Genetic Status and Expression of the Cyclin‐dependent Kinase Inhibitors in Human Gastric Carcinoma Cell Lines , 1996, Japanese journal of cancer research : Gann.

[155]  F. Dammacco,et al.  p16 gene analysis in multiple myeloma (MM). , 1996, Leukemia.

[156]  A. Saxena,et al.  Abnormalities of p16, p15 and CDK4 genes in recurrent malignant astrocytomas. , 1996, Oncogene.

[157]  A. Elefanty,et al.  Expression of the tumour suppressor genes p15 and p16 in malignant melanoma , 1996, Melanoma research.

[158]  D. Carson,et al.  Identification of human tumour suppressor genes by monochromosome transfer: rapid growth-arrest response mapped to 9p21 is mediated solely by the cyclin-D-dependent kinase inhibitor gene, CDKN2A (p16INK4A). , 1996, Carcinogenesis.

[159]  V. Kraynov,et al.  Tumor Suppressor p16INK4A: Structural Characterization of Wild-Type and Mutant Proteins by NMR and Circular Dichroism† , 1996 .

[160]  K. Walsh,et al.  Resistance to Apoptosis Conferred by Cdk Inhibitors During Myocyte Differentiation , 1996, Science.

[161]  J. Block,et al.  Chromosome 9 related aberrations and deletions of the CDKN2 and MTS2 putative tumor suppressor genes in human chondrosarcomas. , 1996, Cancer letters.

[162]  J. Block,et al.  Partial deletions of the CDKN2 and MTS2 putative tumor suppressor genes in a myxoid chondrosarcoma. , 1996, Cancer letters.

[163]  N. Nishida,et al.  Infrequent alterations of the p16INK4A gene in liver cancer , 1996, International journal of cancer.

[164]  S. Tsunoda,et al.  Alterations of retinoblastoma, p53, p16(CDKN2), and p15 genes in human astrocytomas , 1996, Cancer.

[165]  A. Kamb,et al.  Reversible, p16-mediated cell cycle arrest as protection from chemotherapy. , 1996, Cancer research.

[166]  M. Diccianni,et al.  The p16 and p18 tumor suppressor genes in neuroblastoma: implications for drug resistance. , 1996, Cancer letters.

[167]  Ciro Mercurio,et al.  Biochemical Characterization of p16INK4- and p18-containing Complexes in Human Cell Lines* , 1996, The Journal of Biological Chemistry.

[168]  O. Pereira-smith,et al.  Replicative Senescence: Implications for in Vivo Aging and Tumor Suppression , 1996, Science.

[169]  S. Lippman,et al.  Frequent microsatellite alterations at chromosomes 9p21 and 3p14 in oral premalignant lesions and their value in cancer risk assessment , 1996, Nature Medicine.

[170]  A. Fusco,et al.  Status and expression of the p16INK4 gene in human thyroid tumors and thyroid‐tumor cell lines , 1996, International journal of cancer.

[171]  J. Geradts,et al.  High frequency of aberrant p16(INK4A) expression in human breast cancer. , 1996, The American journal of pathology.

[172]  R. Aguiar,et al.  Deletion analysis of the p16 tumour suppressor gene in phaeochromocytomas , 1996, Clinical endocrinology.

[173]  E. Shaw,et al.  Genetic analysis of second primary lung cancers in patients surviving small cell lung cancer. , 1996, Clinical cancer research : an official journal of the American Association for Cancer Research.

[174]  T. Kumanishi,et al.  Primary Malignant Lymphoma of the Brain: Demonstration of Frequent p16 and p15 Gene Deletions , 1996, Japanese journal of cancer research : Gann.

[175]  J. Schalken,et al.  p16 mutations/deletions are not frequent events in prostate cancer. , 1996, British Journal of Cancer.

[176]  Y. Hayashi,et al.  Homozygous deletions of p16/MTS1 and p15/MTS2 genes are frequent in t(1;19)-negative but not in t(1;19)-positive B precursor acute lymphoblastic leukemia in childhood. , 1996, Leukemia.

[177]  C. Reznikoff,et al.  Elevated p16 at senescence and loss of p16 at immortalization in human papillomavirus 16 E6, but not E7, transformed human uroepithelial cells. , 1996, Cancer research.

[178]  S. Linder,et al.  Expression of CDK inhibitor genes in immortalized and carcinoma derived breast cell lines. , 1996, Anticancer research.

[179]  K. Sakata Alterations of tumor suppressor genes and the H-ras oncogene in oral squamous cell carcinoma. , 1996, Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology.

[180]  G. Peters,et al.  Temperature-sensitive mutants of p16CDKN2 associated with familial melanoma , 1996, Molecular and cellular biology.

[181]  S. Leung,et al.  Hypermethylation of the p16 gene in nasopharyngeal carcinoma. , 1996, Cancer research.

[182]  S. Ogawa,et al.  Inactivation of multiple tumor-suppressor genes involved in negative regulation of the cell cycle, MTS1/p16INK4A/CDKN2, MTS2/p15INK4B, p53, and Rb genes in primary lymphoid malignancies. , 1996, Blood.

[183]  P. Tran,et al.  Genomic cloning of methylthioadenosine phosphorylase: a purine metabolic enzyme deficient in multiple different cancers. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[184]  E. Okajima,et al.  Infrequent somatic alteration of p16/MTS1 in human primary superficial bladder cancers. , 1996, Cancer letters.

[185]  C. James,et al.  Common alternative gene alterations in adult malignant astrocytomas, but not in childhood primitive neuroectodermal tumors: P 16ink4 homozygous deletions and CDK4 gene amplifications. , 1996, Journal of neurosurgery.

[186]  J. Califano,et al.  11:40 AM: A Genetic Progression Model for Head and Neck Cancer: Implications for Field Cancerization , 1996 .

[187]  K. Post,et al.  Frequent loss of the P16INK4a gene product in human pituitary tumors. , 1996, Cancer research.

[188]  F. Ragione,et al.  p16INK4A gene homozygous deletions in human acute leukaemias with alterations of chromosome 9 , 1996, British journal of haematology.

[189]  P. Jones,et al.  DNA methylation errors and cancer. , 1996, Cancer research.

[190]  Å. Borg,et al.  Novel germline p16 mutation in familial malignant melanoma in southern Sweden. , 1996, Cancer research.

[191]  U. Kees,et al.  Deletions of the p16 gene in pediatric leukemia and corresponding cell lines. , 1996, Oncogene.

[192]  P. Goodfellow,et al.  Reduced survival in patients with ductal pancreatic adenocarcinoma associated with CDKN2 mutation. , 1996, Journal of the National Cancer Institute.

[193]  T. Fukui,et al.  Allelotype analysis in mouse hepatocellular carcinomas; frequent homozygous deletion of mouse homolog of p16/CDKN2 gene on chromosome 4 in culture. , 1996, Biological & pharmaceutical bulletin.

[194]  M. Berger,et al.  Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation. , 1996, Cancer research.

[195]  M. Hollstein,et al.  Low frequency of p16/CDKN2 gene mutations in esophageal carcinomas , 1996, International journal of cancer.

[196]  P. Kleihues,et al.  Infrequent alterations of the p15, p16, CDK4 and CYCLIN D1 genes in non‐astrocytic human brain tumors , 1996, International journal of cancer.

[197]  K. Srivenugopal,et al.  Deletions and rearrangements inactivate the p16INK4 gene in human glioma cells. , 1996, Oncogene.

[198]  D. Grandér,et al.  Prognostic importance of p15INK4B and p16INK4 gene inactivation in childhood acute lymphocytic leukemia. , 1996, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[199]  D. Grandér,et al.  p16INK4/p15INK4B gene inactivation is a frequent event in malignant T‐cell lines , 1996, European journal of haematology.

[200]  A. Okamoto,et al.  Suppression of growth in vitro and tumorigenicity in vivo of human carcinoma cell lines by transfected p16INK4 , 1996, Molecular carcinogenesis.

[201]  T. Kirita,et al.  Alterations of p16/CDKN2, p53 and ras genes in oral squamous cell carcinomas and premalignant lesions. , 1996, Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology.

[202]  S. Tsunoda,et al.  Immunohistochemical detection of CDKN2, retinoblastoma and p53 gene products in primary astrocytic tumors. , 1996, International journal of oncology.

[203]  T. Urano,et al.  Decreased expression of p16 gene in gastric cancer. , 1996, International journal of oncology.

[204]  D. Sidransky Cancer genetics: Two tracks but one race? , 1996, Current Biology.

[205]  K. Riabowol,et al.  Differential CDK-inhibitor gene expression in aging human diploid fibroblasts , 1996, Experimental Gerontology.

[206]  J. Nevins,et al.  Inhibition of cyclin D-CDK4/CDK6 activity is associated with an E2F-mediated induction of cyclin kinase inhibitor activity. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[207]  K. Shimotohno,et al.  Expression of cell-cycle regulatory genes in HTLV-I infected T-cell lines: possible involvement of Tax1 in the altered expression of cyclin D2, p18Ink4 and p21Waf1/Cip1/Sdi1. , 1996, Oncogene.

[208]  E. Stanbridge,et al.  Design of a novel bicistronic expression vector with demonstration of a p16INK4-induced G(1)-S block(1). , 1996, Cancer research.

[209]  R. Sutherland,et al.  Cancer‐associated mis‐sense and deletion mutations impair p16INK4 CDK inhibitory activity , 1996, International journal of cancer.

[210]  L. Chin,et al.  Role of the INK4a Locus in Tumor Suppression and Cell Mortality , 1996, Cell.

[211]  M. Yoshida,et al.  HTLV‐1 Tax protein interacts with cyclin‐dependent kinase inhibitor p16INK4A and counteracts its inhibitory activity towards CDK4. , 1996, The EMBO journal.

[212]  W. Schmiegel,et al.  Frequent codeletion of p16/MTS1 and p15/MTS2 and genetic alterations in p16/MTS1 in pancreatic tumors. , 1996, Gastroenterology.

[213]  R. Jamal,et al.  Variable expression of p16 protein in patients with acute myeloid leukemia without gross rearrangements at the DNA level. , 1996, Leukemia.

[214]  G. Basso,et al.  Analysis of cyclin‐dependent kinase inhibitor genes (CDKN2A, CDKN2B, and CDKN2C) in childhood rhabdomyosarcoma , 1996, Genes, chromosomes & cancer.

[215]  E. Hovig,et al.  Involvement of the pRb/p16/cdk4/cyclin D1 pathway in the tumorigenesis of sporadic malignant melanomas. , 1996, British Journal of Cancer.

[216]  S. Smith,et al.  Deletion or lack of expression of CDKN2 (CDK4I/MTS1/INK4A) and MTS2 (INK4B) in acute lymphoblastic leukemia cell lines reflects the phenotype of the uncultured primary leukemia cells. , 1996, Leukemia.

[217]  A. D. Dei Tos,et al.  Tumor suppressor genes and related molecules in leiomyosarcoma. , 1996, The American journal of pathology.

[218]  A. Rustgi,et al.  p16 inhibition of transformed and primary squamous epithelial cells. , 1996, Oncogene.

[219]  T. Ohnishi,et al.  Lack of p16/CDKN2 alterations in thyroid carcinomas. , 1996, Cancer letters.

[220]  B. Rollins,et al.  p16INK4A as a human tumor suppressor. , 1996, Biochimica et biophysica acta.

[221]  C. Shields,et al.  Deletion mapping of chromosome region 9p21‐p22 surrounding the CDKN2 locus in melanoma , 1996, International journal of cancer.

[222]  F. Sigaux,et al.  Multiple tumor-suppressor gene 1 inactivation is the most frequent genetic alteration in T-cell acute lymphoblastic leukemia. , 1996, Blood.

[223]  Qiang Wu,et al.  Growth arrest and suppression of tumorigenicity of bladder carcinoma cell lines induced by the P16/CDKN2 (p16INK4A, MTS1) gene and other loci on human chromosome 9 , 1996, International journal of cancer.

[224]  A. Okamoto,et al.  Intragenic mutations of the p16INK4, p15INK4B and p18 genes in primary non‐small‐cell lung cancers , 1996 .

[225]  S. Kawauchi,et al.  Homozygous deletion of mouse homolog of p16/CDKN2 gene on chromosome 4 in mouse liver epithelial cells in culture. , 1996, Biological & pharmaceutical bulletin.

[226]  D. Becker,et al.  Differential expression of the cyclin-dependent kinase inhibitors p16 and p21 in the human melanocytic system. , 1996, Oncogene.

[227]  T. Goodrow,et al.  Deletion and mutation analyses of the P16/MTS-1 tumor suppressor gene in human ductal pancreatic cancer reveals a higher frequency of abnormalities in tumor-derived cell lines than in primary ductal adenocarcinomas. , 1996, Cancer research.

[228]  Z. Tang,et al.  Alterations of CDKN2(p16/MTS1) exon 2 in human hepatocellular carcinoma. , 1996, Oncology reports.

[229]  T. Savarese,et al.  Gene deletion chemoselectivity: codeletion of the genes for p16(INK4), methylthioadenosine phosphorylase, and the alpha- and beta-interferons in human pancreatic cell carcinoma lines and its implications for chemotherapy. , 1996, Cancer research.

[230]  N. Konishi,et al.  Focal distribution of p16/CDKN2 gene mutations within individual prostate carcinomas. , 1996, International journal of oncology.

[231]  G. Peters,et al.  Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence , 1996, Molecular and cellular biology.

[232]  N. Hayward The current situation with regard to human melanoma and genetic inferences. , 1996, Current opinion in oncology.

[233]  D. Grandér,et al.  Exclusive p15INK4B gene deletions in acute lymphocytic leukemia include the E1 beta exon of the p16INK4 gene. , 1996, Blood.

[234]  J. Herman,et al.  Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. , 1996, Cancer research.

[235]  H. Matsuda,et al.  Inversely correlated expression of p16 and Rb protein in non‐small cell lung cancers: An immunohistochemical study , 1996, International journal of cancer.

[236]  N. Cross,et al.  Mutational analysis of the p15 and p16 genes in acute leukaemias , 1996, British journal of haematology.

[237]  M. Inganäs,et al.  Mutational analysis of the CDKN2 gene in metastases from patients with cutaneous malignant melanoma. , 1996, British Journal of Cancer.

[238]  Y. Takeshima,et al.  p16/CDKN2 Gene and p53 Gene Alterations in Japanese Non‐smoking Female Lung Adenocarcinoma , 1996, Japanese journal of cancer research : Gann.

[239]  A. Iolascon,et al.  Homozygous deletions of cyclin-dependent kinase inhibitor genes, p16(INK4A) and p18, in childhood T cell lineage acute lymphoblastic leukemias. , 1996, Leukemia.

[240]  H. Koeffler,et al.  Alterations of the p15, p16,and p18 genes in osteosarcoma. , 1996, Cancer genetics and cytogenetics.

[241]  P. Pollock,et al.  Compilation of somatic mutations of the CDKN2 gene in human cancers: Non‐random distribution of base substitutions , 1996, Genes, chromosomes & cancer.

[242]  C. Bartram,et al.  Molecular analysis of the cyclin‐dependent kinase inhibitor family: p16(CDKN2/MTS1/INK4A), p18(INK4C) and p27(Kip1) genes in neuroblastomas , 1996, Cancer.

[243]  H. Kaneko,et al.  Alterations of CDKN2 gene structure in childhood acute lymphoblastic leukemia: mutations of CDKN2 are observed preferentially in T lineage. , 1996, Leukemia.

[244]  R. Siebert,et al.  Analysis of the novel cyclin-dependent kinase 4 and 6 inhibitor gene p18 in lymphoma and leukemia cell lines. , 1996, Leukemia research.

[245]  E. Healy,et al.  Allelotypes of primary cutaneous melanoma and benign melanocytic nevi. , 1996, Cancer research.

[246]  H. Gabra,et al.  High frequency of chromosome 9 deletion in ovarian cancer: evidence for three tumour-suppressor loci. , 1996, British Journal of Cancer.

[247]  M. Raffeld,et al.  Absence of p18 mutations or deletions in lymphoid malignancies. , 1996, Leukemia.

[248]  R. Fåhraeus,et al.  Inhibition of pRb phosphorylation and cell-cycle progression by a 20-residue peptide from p16CDKN2/INK4A , 1996, Current Biology.

[249]  Y. Xiong,et al.  Mutational analysis of the p16 family cyclin-dependent kinase inhibitors p15INK4b and p18INK4c in tumor-derived cell lines and primary tumors. , 1996, Oncogene.

[250]  M. Schlumberger,et al.  High frequency deletion of the tumour suppressor gene P16INK4a (MTS1) in human thyroid cancer cell lines , 1996, Molecular and Cellular Endocrinology.

[251]  M. Serrano,et al.  Analysis of p16INK4a and its interaction with CDK4. , 1996, Biochemical and biophysical research communications.

[252]  J. Bruner,et al.  Mutations of the p16 gene in gliomas. , 1996, Oncogene.

[253]  J. Bruner,et al.  Adenovirus-mediated p16/CDKN2 gene transfer induces growth arrest and modifies the transformed phenotype of glioma cells. , 1996, Oncogene.

[254]  P. Goodfellow,et al.  Infrequent CDKN2 mutation in human differentiated thyroid cancers , 1996, Molecular carcinogenesis.

[255]  H. Cavé,et al.  Deletion mapping indicates that MTS1 is the target of frequent deletions at chromosome 9p21 in paediatric acute lymphoblastic leukaemias , 1996, British journal of haematology.

[256]  F. Kaye,et al.  Immunohistochemical analysis of the p16INK4 cyclin-dependent kinase inhibitor in malignant mesothelioma. , 1995, Journal of the National Cancer Institute.

[257]  A. Sigurdsson,et al.  Loss of heterozygosity on chromosome 9 in human breast cancer: Association with clinical variables and genetic changes at other chromosome regions , 1995, International journal of cancer.

[258]  R. Kratzke,et al.  Immunohistochemical detection of the cyclin-dependent kinase inhibitor 2/multiple tumor suppressor gene 1 (CDKN2/MTS1) product p16INK4A in archival human solid tumors: correlation with retinoblastoma protein expression. , 1995, Cancer research.

[259]  F. Zindy,et al.  Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest , 1995, Cell.

[260]  C. D. Edwards,et al.  Multiple mechanisms of p16INK4A inactivation in non-small cell lung cancer cell lines. , 1995, Cancer research.

[261]  B. Peters,et al.  Analysis of the p16 gene, CDKN2, in 17 Australian melanoma kindreds. , 1995, Oncogene.

[262]  M. Skolnick,et al.  CDKN2 (MTS1) tumor suppressor gene mutations in human tumor cell lines. , 1995, Oncogene.

[263]  G. Finocchiaro,et al.  Deletion and transfection analysis of the p15/MTS2 gene in malignant gliomas. , 1995, Biochemical and biophysical research communications.

[264]  A. Kyritsis,et al.  A frequent polymorphism in exon 1 of the p16/CDKN2 gene. , 1995, Molecular and cellular probes.

[265]  A. Albino,et al.  Homozygous loss of the p15INK4B gene (and not the p16INK4 gene) during tumor progression in a sporadic melanoma patient. , 1995, Cancer research.

[266]  O. Olopade,et al.  CDKN2 gene deletion is not found in chronic lymphoid leukaemias of B‐ and T‐cell origin but is frequent in acute lymphoblastic leukaemia , 1995, British journal of haematology.

[267]  Carl W. Miller,et al.  Molecular analysis of a family of cyclin‐dependent kinase inhibitor genes (p15/MTS2/INK4b and p18/INK4c) in non‐small cell lung cancers , 1995, Molecular carcinogenesis.

[268]  T. Sekiya,et al.  Loss of heterozygosity at 9p21 loci and mutations of the MTS1 and MTS2 genes in human lung cancers , 1995, International journal of cancer.

[269]  S. Wick,et al.  Biochemical and mutagenic analysis of the melanoma tumor suppressor gene product/p16. , 1995, Oncogene.

[270]  T. Sekiya,et al.  Homozygous deletion of the MTS1/p16 and MTS2/p15 genes and amplification of the CDK4 gene in glioma. , 1995, Oncogene.

[271]  A. Balmain,et al.  Deletion and altered regulation of p16INK4a and p15INK4b in undifferentiated mouse skin tumors. , 1995, Cancer research.

[272]  J. Epstein,et al.  Partial allelotype of carcinoma in situ of the human bladder. , 1995, Cancer research.

[273]  R. Sutherland,et al.  Expression of the cyclin‐dependent kinase inhibitors p16INK4, p15INK4B and p21Waf1/cip1 in human breast cancer , 1995, International journal of cancer.

[274]  Jian-ming Li,et al.  Transforming Growth Factor β Activates the Promoter of Cyclin-dependent Kinase Inhibitor p15INK4B through an Sp1 Consensus Site (*) , 1995, The Journal of Biological Chemistry.

[275]  T. Ohnishi,et al.  Homozygous deletions of p16INK4A/MTS1 and p15INK4B/MTS2 genes in glioma cells and primary glioma tissues. , 1995, Cancer letters.

[276]  M. Kelley,et al.  Mechanism of inactivation of CDKN2 and MTS2 in non-small cell lung cancer and association with advanced stage. , 1995, Oncogene.

[277]  E. Newcomb,et al.  Alterations of multiple tumor suppressor genes (p53 (17p13), p16INK4 (9p21), and DBM (13q14)) in B‐CELL chronic lymphocytic leukemia , 1995, Molecular carcinogenesis.

[278]  F. Ragione,et al.  Involvement of the cyclin‐dependent kinase‐4 inhibitor (CDKN2) gene in the pathogenesis of lymphoid blast crisis of chronic myelogenous leukaemia , 1995, British journal of haematology.

[279]  A. Iolascon,et al.  High frequency of homozygous deletions of CDK4I gene in childhood acute lymphoblastic leukaemia , 1995, British journal of haematology.

[280]  J. Southgate,et al.  Loss of cyclin-dependent kinase inhibitor genes and chromosome 9 karyotypic abnormalities in human bladder cancer cell lines. , 1995, British Journal of Cancer.

[281]  Jack A. Taylor,et al.  Homozygous deletions but no sequence mutations in coding regions of p15 or p16 in human primary bladder tumors , 1995, Molecular carcinogenesis.

[282]  B. Scheithauer,et al.  Histopathology, classification, and grading of gliomas , 1995, Glia.

[283]  J. Bartek,et al.  Oncogenic aberrations of p16INK4/CDKN2 and cyclin D1 cooperate to deregulate G1 control. , 1995, Cancer research.

[284]  Carl W. Miller,et al.  Alterations of CDKN2 (p16) in non‐small cell lung cancer , 1995, Genes, chromosomes & cancer.

[285]  P. Goodfellow,et al.  Frequent mutations of CDKN2 in primary pancreatic adenocarcinomas , 1995, Genes, chromosomes & cancer.

[286]  J. Olson,et al.  Lack of p16INK4 or retinoblastoma protein (pRb), or amplification-associated overexpression of cdk4 is observed in distinct subsets of malignant glial tumors and cell lines. , 1995, Cancer research.

[287]  S. Melmed,et al.  Alterations of the p16 (MTS1) gene in testicular, ovarian, and endometrial malignancies. , 1995, The Journal of urology.

[288]  M. Ergazaki,et al.  Loss of heterozygosity at 9p and 17q in human laryngeal tumors. , 1995, Cancer letters.

[289]  G. Peters,et al.  Evidence for different modes of action of cyclin-dependent kinase inhibitors: p15 and p16 bind to kinases, p21 and p27 bind to cyclins. , 1995, Oncogene.

[290]  G. Hannon,et al.  Deletion of the p16 and p15 genes in human bladder tumors. , 1995, Journal of the National Cancer Institute.

[291]  R. Beart,et al.  Methylation of the 5' CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. , 1995, Cancer research.

[292]  Y. Xiong,et al.  Deletion of cyclin-dependent kinase 4 inhibitor genes P15 and P16 in non-Hodgkin's lymphoma , 1995 .

[293]  J. Herman,et al.  Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. , 1995, Cancer research.

[294]  A M Goldstein,et al.  Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4 mutations. , 1995, The New England journal of medicine.

[295]  P. Goodfellow,et al.  Brief report: a familial syndrome of pancreatic cancer and melanoma with a mutation in the CDKN2 tumor-suppressor gene. , 1995, The New England journal of medicine.

[296]  J. Downing,et al.  Molecular cloning, expression pattern, and chromosomal localization of human CDKN2D/INK4d, an inhibitor of cyclin D-dependent kinases. , 1995, Genomics.

[297]  M. Hengstschläger,et al.  Expression of the cyclin‐dependent kinase inhibitor p16 during the ongoing cell cycle , 1995, FEBS letters.

[298]  W. Foulkes,et al.  Loh and mutation analysis of CDKN2 in primary human ovarian cancers , 1995, International journal of cancer.

[299]  F. Kaye,et al.  CDKN2 in HPV‐positive and HPV‐negative cervical‐carcinoma cell lines , 1995, International journal of cancer.

[300]  R. Berkowitz,et al.  Detailed deletion mapping of chromosome 9p and p16 gene alterations in human borderline and invasive epithelial ovarian tumors. , 1995, Oncogene.

[301]  M. Bar‐eli,et al.  Abnormalities in the CDKN2 (p16INK4/MTS-1) gene in human melanoma cells: relevance to tumor growth and metastasis. , 1995, Oncogene.

[302]  T. Hudson,et al.  Novel fluorescence in situ hybridization approaches in solid tumors. Characterization of frozen specimens, touch preparations, and cytological preparations. , 1995, The American journal of pathology.

[303]  G. Hannon,et al.  Intragenic mutations of CDKN2B and CDKN2A in primary human esophageal cancers. , 1995, Human molecular genetics.

[304]  Kathleen R. Cho,et al.  Frequency of homozygous deletion at p16/CDKN2 in primary human tumours , 1995, Nature Genetics.

[305]  K. Uzawa,et al.  Mutational state of p16/cdkn2 and vhl genes in squamous-cell carcinoma of the oral cavity. , 1995, International journal of oncology.

[306]  J. Foekens,et al.  Infrequent CDKN2 (MTS1/p16) gene alterations in human primary breast cancer. , 1995, British Journal of Cancer.

[307]  R. Siebert,et al.  Homozygous loss of the MTSl/pl6 and MTS2/pl5 genes in lymphoma and lymphoblastic leukaemia cell lines , 1995, British journal of haematology.

[308]  N. Hayward,et al.  Mutations of the CDKN2/p16INK4 gene in Australian melanoma kindreds. , 1995, Human molecular genetics.

[309]  T. Kinoshita,et al.  Mutational analysis of the CDKN2 (MTS1/p16ink4A) gene in primary B-cell lymphomas. , 1995, Blood.

[310]  C Roskelley,et al.  A biomarker that identifies senescent human cells in culture and in aging skin in vivo. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[311]  F. Kaye,et al.  CDKN2 gene silencing in lung cancer by DNA hypermethylation and kinetics of p16INK4 protein induction by 5-aza 2'deoxycytidine. , 1995, Oncogene.

[312]  A. Reymond,et al.  p16 proteins from melanoma-prone families are deficient in binding to Cdk4. , 1995, Oncogene.

[313]  C. Busch,et al.  High frequency of chromosome 9p allelic loss and CDKN2 tumor suppressor gene alterations in squamous cell carcinoma of the bladder. , 1995, Journal of the National Cancer Institute.

[314]  L. Cooper,et al.  Expression of the p16 and p15 cyclin-dependent kinase inhibitors in lymphocyte activation and neuronal differentiation. , 1995, Cancer research.

[315]  L. Cannon-Albright,et al.  Genomic structure, expression and mutational analysis of the P15 (MTS2) gene. , 1995, Oncogene.

[316]  E. Musgrove,et al.  Involvement of RB-1, p53, p16INK4 and telomerase in immortalisation of human cells. , 1995, Oncogene.

[317]  O. Hino,et al.  Molecular genetic basis of renal carcinogenesis in the Eker rat model of tuberous sclerosis(Tsc2) , 1995, Molecular carcinogenesis.

[318]  M. Williamson,et al.  p16 (CDKN2) is a major deletion target at 9p21 in bladder cancer. , 1995, Human molecular genetics.

[319]  M. Serrano,et al.  A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma , 1995, Science.

[320]  Carl W. Miller,et al.  Structural integrity of the cyclin‐dependent kinase inhibitor genes, p15, p16 and p18 in myeloid leukaemias , 1995, British journal of haematology.

[321]  E. Coto,et al.  Loss of heterozygosity and mutation analysis of the p16 (9p21) and p53 (17p13) genes in squamous cell carcinoma of the head and neck. , 1995, Clinical cancer research : an official journal of the American Association for Cancer Research.

[322]  T. Hunter,et al.  Redistribution of the CDK inhibitor p27 between different cyclin.CDK complexes in the mouse fibroblast cell cycle and in cells arrested with lovastatin or ultraviolet irradiation. , 1995, Molecular biology of the cell.

[323]  R. Takahashi,et al.  Contribution of Chromosome 9p21‐22 Deletion to the Progression of Human Renal Cell Carcinoma , 1995, Japanese journal of cancer research : Gann.

[324]  G. Hannon,et al.  Cloning and characterization of murine p16INK4a and p15INK4b genes. , 1995, Oncogene.

[325]  P. Pollock,et al.  Evidence for u.v. induction of CDKN2 mutations in melanoma cell lines. , 1995, Oncogene.

[326]  S. Ogawa,et al.  Loss of the cyclin-dependent kinase 4-inhibitor (p16; MTS1) gene is frequent in and highly specific to lymphoid tumors in primary human hematopoietic malignancies. , 1995, Blood.

[327]  H. Koeffler,et al.  Deletions of the cyclin-dependent kinase inhibitor genes p16INK4A and p15INK4B in non-Hodgkin's lymphomas. , 1995, Blood.

[328]  Y. Hayashi,et al.  Homozygous deletions of p16/MTS1 gene are frequent but mutations are infrequent in childhood T-cell acute lymphoblastic leukemia. , 1995, Blood.

[329]  J. Fletcher,et al.  Codeletion of p15 and p16 in primary malignant mesothelioma. , 1995, Oncogene.

[330]  K. Hoang-Xuan,et al.  Frequent loss of heterozygosity on chromosome 9, and low incidence of mutations of cyclin-dependent kinase inhibitors p15 (MTS2) and p16 (MTS1) genes in gliomas. , 1995, Oncogene.

[331]  X. Estivill,et al.  Chromosome 9p deletions in cutaneous malignant melanoma tumors: the minimal deleted region involves markers outside the p16 (CDKN2) gene. , 1995, American journal of human genetics.

[332]  B. Quesnel,et al.  Analysis of p16 gene deletion and point mutation in breast carcinoma. , 1995, British Journal of Cancer.

[333]  S. Meltzer,et al.  Genomic DNA and messenger rna expression alterations of the CDKN2B and CDKN2 genes in esophageal squamous carcinoma cell lines , 1995, Genes, chromosomes & cancer.

[334]  P. Goodfellow,et al.  Low frequency of CDKN2 mutation in endometrial carcinomas , 1995, Molecular carcinogenesis.

[335]  H. Koeffler,et al.  Role of the cyclin-dependent kinase inhibitors in the development of cancer. , 1995, Blood.

[336]  J. Roth,et al.  Cell cycle arrest and inhibition of tumor cell proliferation by the p16INK4 gene mediated by an adenovirus vector. , 1995, Cancer research.

[337]  E. Hovig,et al.  Homozygous deletion frequency and expression levels of the CDKN2 gene in human sarcomas--relationship to amplification and mRNA levels of CDK4 and CCND1. , 1995, British Journal of Cancer.

[338]  A. Iavarone,et al.  Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. , 1995, Genes & development.

[339]  T. Sugimura,et al.  Mutation frequency of the p16/CDKN2 gene in primary cancers in the upper digestive tract. , 1995, Cancer research.

[340]  K. Mimori,et al.  Multiple tumor-suppressor-1 gene and esophageal-carcinoma. , 1995, International journal of oncology.

[341]  J. Barrett,et al.  Genetic analysis of cellular senescence. , 1995, Biochimica et biophysica acta.

[342]  J. Slingerland,et al.  Germline p16INK4A mutation and protein dysfunction in a family with inherited melanoma. , 1995, Oncogene.

[343]  S. Tavtigian,et al.  Complex structure and regulation of the P16 (MTS1) locus. , 1995, Cancer research.

[344]  C. Bartram,et al.  Analysis of a family of cyclin-dependent kinase inhibitors: p15/MTS2/INK4B, p16/MTS1/INK4A, and p18 genes in acute lymphoblastic leukemia of childhood. , 1995, Blood.

[345]  C. D. Edwards,et al.  A novel p16INK4A transcript. , 1995, Cancer research.

[346]  J. Fletcher,et al.  Codeletion of p15 and p16 genes in primary non-small cell lung carcinoma. , 1995, Cancer research.

[347]  R. Berger,et al.  A new type of p16INK4/MTS1 gene transcript expressed in B-cell malignancies. , 1995, Oncogene.

[348]  R. Weinberg,et al.  Growth suppression by p16ink4 requires functional retinoblastoma protein. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[349]  O. Olopade,et al.  Construction of a 2.8-megabase yeast artificial chromosome contig and cloning of the human methylthioadenosine phosphorylase gene from the tumor suppressor region on 9p21. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[350]  Hiroyoshi Suzuki,et al.  Mutational Analysis of CDKN2 (CDK4I/MTS1) Gene in Tissues and Cell Lines of Human Prostate Cancer , 1995, Japanese journal of cancer research : Gann.

[351]  J. Barrett,et al.  Homozygous deletions at chromosome 9p21 and mutation analysis of p16 and p15 in microdissected primary non-small cell lung cancers. , 1995, Clinical cancer research : an official journal of the American Association for Cancer Research.

[352]  J. Herman,et al.  5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers , 1995, Nature Medicine.

[353]  S. Hanai,et al.  Mutations of p16Ink4/CDKN2 and p15Ink4B/MTS2 genes in biliary tract cancers. , 1995, Cancer research.

[354]  C. Bréchot,et al.  Alterations of cyclin-dependent kinase 4 inhibitor (p16INK4A/MTS1) gene structure and expression in acute lymphoblastic leukemias. , 1995, Leukemia.

[355]  C. James,et al.  Homozygous deletions of the CDKN2 (MTS1/p16ink4) gene in cell lines established from children with acute lymphoblastic leukemia. , 1995, Leukemia.

[356]  F. Haluska,et al.  Loss of expression of the p16/cyclin-dependent kinase inhibitor 2 tumor suppressor gene in melanocytic lesions correlates with invasive stage of tumor progression. , 1995, Cancer research.

[357]  T. Manshouri,et al.  p16INK4A and p15INK4B gene deletions in primary leukemias. , 1995, Blood.

[358]  A. Brenner,et al.  Chromosome 9p allelic loss and p16/CDKN2 in breast cancer and evidence of p16 inactivation in immortal breast epithelial cells. , 1995, Cancer research.

[359]  L. Sandkuijl,et al.  Homozygotes for CDKN2 (p16) germline mutation in Dutch familial melanoma kindreds , 1995, Nature Genetics.

[360]  H P Koeffler,et al.  Mutational effects on the p16INK4a tumor suppressor protein. , 1995, Cancer research.

[361]  A. Kaye,et al.  Homozygous deletions of the MTS1 gene are rare in non-astrocytic brain tumors. , 1995, Biochemical and biophysical research communications.

[362]  D. Grandér,et al.  p15ink4B and p16ink4 gene inactivation in acute lymphocytic leukemia. , 1995, Blood.

[363]  J. Bartek,et al.  Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16 , 1995, Nature.

[364]  B. Dynlacht,et al.  Tumour-derived p16 alleles encoding proteins defective in cell-cycle inhibition , 1995, Nature.

[365]  L. Sandkuijl,et al.  CDKN2 explains part of the clinical phenotype in Dutch familial atypical multiple‐mole melanoma (FAMMM) syndrome families , 1995, Melanoma research.

[366]  R. Chaganti,et al.  Homozygous Deletions and Loss of Expression of the CDKN2 gene occur frequently in head and neck squamous cell carcinoma cell lines but infrequently in primary tumors , 1995, Genes, chromosomes & cancer.

[367]  G. Stein,et al.  Origins of G1 arrest in senescent human fibroblasts , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[368]  S. Steinberg,et al.  Differential inactivation of CDKN2 and Rb protein in non-small-cell and small-cell lung cancer cell lines. , 1995, Journal of the National Cancer Institute.

[369]  M. Tomonaga,et al.  Homozygous deletions of the p15 (MTS2) and p16 (CDKN2/MTS1) genes in adult T-cell leukemia. , 1995, Blood.

[370]  F. Mandelli,et al.  Detection of homozygous deletions of the cyclin-dependent kinase 4 inhibitor (p16) gene in acute lymphoblastic leukemia and association with adverse prognostic features. , 1995, Blood.

[371]  James M. Roberts,et al.  Inhibitors of mammalian G1 cyclin-dependent kinases. , 1995, Genes & development.

[372]  J. Maris,et al.  No CDKN2 mutations in neuroblastomas. , 1995, Cancer research.

[373]  D. Huang,et al.  p16 gene alterations in nasopharyngeal carcinoma. , 1995, Cancer research.

[374]  K. Buetow,et al.  Characterization of chromosome 9 in human ovarian neoplasia identifies frequent genetic imbalance on 9q and rare alterations involving 9p, including CDKN2. , 1995, Cancer research.

[375]  R. Weinberg,et al.  The retinoblastoma protein and cell cycle control , 1995, Cell.

[376]  S. Shurtleff,et al.  Frequent deletion of p16INK4a/MTS1 and p15INK4b/MTS2 in pediatric acute lymphoblastic leukemia. , 1995, Blood.

[377]  D N Shapiro,et al.  Identification of human and mouse p19, a novel CDK4 and CDK6 inhibitor with homology to p16ink4 , 1995, Molecular and cellular biology.

[378]  W Arap,et al.  Loss of P16INK4 expression is frequent in high grade gliomas. , 1995, Cancer research.

[379]  M. Roussel,et al.  Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6 , 1995, Molecular and cellular biology.

[380]  J. Bartek,et al.  Cyclin D1 is dispensable for G1 control in retinoblastoma gene-deficient cells independently of cdk4 activity , 1995, Molecular and cellular biology.

[381]  H. Varmus,et al.  Mutations associated with familial melanoma impair p16INK4 function , 1995, Nature Genetics.

[382]  R. Eeles,et al.  Genetic evidence in melanoma and bladder cancers that p16 and p53 function in separate pathways of tumor suppression. , 1995, The American journal of pathology.

[383]  D. Louis,et al.  The multiple tumor suppressor 1/cyclin-dependent kinase inhibitor 2 gene in human central nervous system primitive neuroectodermal tumor. , 1995, Neurosurgery.

[384]  P. Carroll,et al.  Chromosome‐9 loss detected by fluorescence in situ hybridization in bladder cancer , 1995, International journal of cancer.

[385]  M. Serrano,et al.  Association of rat p15INK4B/p16INK4 deletions with monosomy 5 in kidney epithelial cell lines but not primary renal tumors. , 1995, Cancer research.

[386]  J. Goldman,et al.  Homozygous deletions of the p16 tumor-suppressor gene are associated with lymphoid transformation of chronic myeloid leukemia. , 1995, Blood.

[387]  G. Tamura,et al.  Loss of Heterozygosity on the Short Arm of Chromosome 9 without p16 Gene Mutation in Gastric Carcinomas , 1995, Japanese journal of cancer research : Gann.

[388]  M. Raffeld,et al.  Involvement of CDKN2 (p16INK4A/MTS1) and p15INK4B/MTS2 in human leukemias and lymphomas. , 1995, Cancer research.

[389]  G. Hannon,et al.  Mutations in the p16INK4/MTS1/CDKN2, p15INK4B/MTS2, and p18 genes in primary and metastatic lung cancer. , 1995, Cancer research.

[390]  S. Ogawa,et al.  Frequent Loss of the Cyclin‐dependent Kinase‐4 Inhibitor Gene in Human Gliomas , 1995, Japanese journal of cancer research : Gann.

[391]  J. Bartek,et al.  Aberrations of p16Ink4 and retinoblastoma tumour‐suppressor genes occur in distinct sub‐sets of human cancer cell lines , 1995, International journal of cancer.

[392]  W. Cavenee,et al.  Replacement of the p16/CDKN2 gene suppresses human glioma cell growth. , 1995, Cancer research.

[393]  David O. Morgan,et al.  Principles of CDK regulation , 1995, Nature.

[394]  P. Borgen,et al.  Analysis of MTS1/CDK4 in female breast carcinomas. , 1995, Cancer letters.

[395]  A. Iolascon,et al.  5'-Deoxy-5'-methylthioadenosine phosphorylase and p16INK4 deficiency in multiple tumor cell lines. , 1995, Oncogene.

[396]  Yusuke Nakamura,et al.  Infrequent Somatic Mutation of the MTS1 Gene in Primary Bladder Carcinomas , 1995, Japanese journal of cancer research : Gann.

[397]  O. Olopade,et al.  Detection of CDKN2 deletions in tumor cell lines and primary glioma by interphase fluorescence in situ hybridization. , 1995, Cancer research.

[398]  B. Tycko,et al.  MTS1/p16/CDKN2 lesions in primary glioblastoma multiforme. , 1995, The American journal of pathology.

[399]  A. Okamoto,et al.  IS-12 Mutation and altered expression of P16^ in human cancer. , 1995 .

[400]  A. Hildesheim,et al.  No point mutation but decreased expression of the p16/MTS1 tumor suppressor gene in nasopharyngeal carcinomas. , 1995, Oncogene.

[401]  M. Yuille,et al.  Deletions and rearrangement of CDKN2 in lymphoid malignancy. , 1995, Blood.

[402]  A. Rustgi,et al.  MTS-1 (CDKN2) tumor suppressor gene deletions are a frequent event in esophagus squamous cancer and pancreatic adenocarcinoma cell lines. , 1995, Oncogene.

[403]  C. D. Edwards,et al.  Reciprocal Rb inactivation and p16INK4 expression in primary lung cancers and cell lines. , 1995, Cancer research.

[404]  F. Sigaux,et al.  Homozygous MTS1 (p16INK4A) deletion in primary tumor cells of 163 leukemic patients. , 1995, Blood.

[405]  G. Peters,et al.  Lack of cyclin D‐Cdk complexes in Rb‐negative cells correlates with high levels of p16INK4/MTS1 tumour suppressor gene product. , 1995, The EMBO journal.

[406]  R. Ueda,et al.  In vivo occurrence of p16 (MTS1) and p15 (MTS2) alterations preferentially in non-small cell lung cancers. , 1995, Cancer research.

[407]  B. Quesnel,et al.  p16 gene homozygous deletions in acute lymphoblastic leukemia. , 1995, Blood.

[408]  O. Olopade,et al.  Increased p16 levels correlate with pRb alterations in human urothelial cells. , 1995, Cancer research.

[409]  D. Sidransky,et al.  Localization of tumor suppressor loci on chromosome 9 in primary human renal cell carcinomas. , 1995, Cancer research.

[410]  R. DePinho,et al.  Inhibition of ras-induced proliferation and cellular transformation by p16INK4 , 1995, Science.

[411]  G. Finocchiaro,et al.  Mutation rate of the CDKN2 gene in malignant gliomas. , 1994, Cancer research.

[412]  F. Sigaux,et al.  Candidate tumor-suppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from T- but not from B-cell lineage acute lymphoblastic leukemias. , 1994, Blood.

[413]  K. Kinzler,et al.  Deletion of p16 and p15 genes in brain tumors. , 1994, Cancer research.

[414]  C. O'keefe,et al.  Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. , 1994, Genes & development.

[415]  G. Reifenberger,et al.  CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. , 1994, Cancer research.

[416]  Jing Yin,et al.  Frequent loss of heterozygosity on chromosome 9 in adenocarcinoma and squamous cell carcinoma of the esophagus. , 1994, Cancer research.

[417]  J. A. Bishop,et al.  Genetic heterogeneity in familial malignant melanoma. , 1994, Human molecular genetics.

[418]  E. Lander,et al.  Allelotype analysis of mouse lung carcinomas reveals frequent allelic losses on chromosome 4 and an association between allelic imbalances on chromosome 6 and K-ras activation. , 1994, Cancer research.

[419]  W. A. Yeudall,et al.  MTS1/CDK4I is altered in cell lines derived from primary and metastatic oral squamous cell carcinoma. , 1994, Carcinogenesis.

[420]  M. Skolnick,et al.  Penetrance and expressivity of the chromosome 9p melanoma susceptibility locus (MLM). , 1994, Cancer research.

[421]  J. Shay,et al.  Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. , 1994, Cancer research.

[422]  Paul Nurse,et al.  Ordering S phase and M phase in the cell cycle , 1994, Cell.

[423]  C. Sherr G1 phase progression: Cycling on cue , 1994, Cell.

[424]  C. James,et al.  CDK4 amplification is an alternative mechanism to p16 gene homozygous deletion in glioma cell lines. , 1994, Cancer research.

[425]  M. Pagano,et al.  Differential expression and cell cycle regulation of the cyclin-dependent kinase 4 inhibitor p16Ink4. , 1994, Cancer research.

[426]  A. Okamoto,et al.  Mutations and altered expression of p16INK4 in human cancer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[427]  O. Olopade,et al.  p16 alterations and deletion mapping of 9p21-p22 in malignant mesothelioma. , 1994, Cancer research.

[428]  D. Louis,et al.  Mutational analysis of CDKN2 (MTS1/p16ink4) in human breast carcinomas. , 1994, Cancer research.

[429]  K. Tanaka,et al.  Homozygous loss of the cyclin-dependent kinase 4-inhibitor (p16) gene in human leukemias. , 1994, Blood.

[430]  Ashutosh Kumar Singh,et al.  Rarity of somatic and germline mutations of the cyclin-dependent kinase 4 inhibitor gene, CDK4I, in melanoma. , 1994, Cancer research.

[431]  D. Louis,et al.  MTS1/CDKN2 gene mutations are rare in primary human astrocytomas with allelic loss of chromosome 9p. , 1994, Human molecular genetics.

[432]  A. Klein-Szanto,et al.  Higher frequency of alterations in the p16/CDKN2 gene in squamous cell carcinoma cell lines than in primary tumors of the head and neck. , 1994, Cancer research.

[433]  L. Clark,et al.  Loss of heterozygosity of chromosome 9p21 is associated with the immortal phenotype of neoplastic human head and neck keratinocytes. , 1994, Cancer research.

[434]  T. Sugimura,et al.  Highly frequent homozygous deletion of the p16 gene in esophageal cancer cell lines. , 1994, Biochemical and biophysical research communications.

[435]  Gregory J. Hannon,et al.  pl5INK4B is a potentia| effector of TGF-β-induced cell cycle arrest , 1994, Nature.

[436]  M. Knowles,et al.  Homozygous deletion mapping at 9p21 in bladder carcinoma defines a critical region within 2cM of IFNA. , 1994, Oncogene.

[437]  W. Clark,et al.  Germline p16 mutations in familial melanoma , 1994, Nature Genetics.

[438]  R. Hruban,et al.  Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma , 1994, Nature Genetics.

[439]  M. Skolnick,et al.  Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus , 1994, Nature Genetics.

[440]  M. Ogawa,et al.  Somatic mutations of the MTS (multiple tumor suppressor) 1/CDK4l (cyclin-dependent kinase-4 inhibitor) gene in human primary non-small cell lung carcinomas. , 1994, Biochemical and biophysical research communications.

[441]  M H Skolnick,et al.  Localization of a putative tumor suppressor gene by using homozygous deletions in melanomas. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[442]  M. You,et al.  Deletion mapping of a putative tumor suppressor gene on chromosome 4 in mouse lung tumors. , 1994, Cancer research.

[443]  L. Bonetta Open questions on p16 , 1994, Nature.

[444]  Peter A. Jones,et al.  P16 gene in uncultured tumours , 1994, Nature.

[445]  D. Sidransky,et al.  Rates of p16 (MTS1) mutations in primary tumors with 9p loss. , 1994, Science.

[446]  G. Chenevix-Trench,et al.  Homozygous deletions on the short arm of chromosome 9 in ovarian adenocarcinoma cell lines and loss of heterozygosity in sporadic tumors. , 1994, American journal of human genetics.

[447]  S. Mori,et al.  Frequent somatic mutation of the MTS1/CDK4I (multiple tumor suppressor/cyclin-dependent kinase 4 inhibitor) gene in esophageal squamous cell carcinoma. , 1994, Cancer research.

[448]  M. Knowles,et al.  Definition of two regions of deletion on chromosome 9 in carcinoma of the bladder. , 1994, Oncogene.

[449]  J. Marx A challenge to p16 gene as a major tumor suppressor. , 1994, Science.

[450]  N. Nishida,et al.  Amplification and overexpression of the cyclin D1 gene in aggressive human hepatocellular carcinoma. , 1994, Cancer research.

[451]  K. Ichimura,et al.  A Common Region of Homozygous Deletion in Malignant Human Gliomas Lies between the IFNα/ω Gene Cluster and the D9S171 Locus , 1994 .

[452]  D. Elder,et al.  Chromosome 9 deletion in sporadic and familial melanomas in vivo. , 1994, Oncogene.

[453]  C. Cordon-Cardo,et al.  Chromosome 9 allelic losses and microsatellite alterations in human bladder tumors. , 1994, Cancer research.

[454]  J. Bartek,et al.  DNA tumor virus oncoproteins and retinoblastoma gene mutations share the ability to relieve the cell's requirement for cyclin D1 function in G1 , 1994, The Journal of cell biology.

[455]  S. Baylin,et al.  Homozygous deletion on chromosome 9p and loss of heterozygosity on 9q, 6p, and 6q in primary human small cell lung cancer. , 1994, Cancer research.

[456]  L. Campbell,et al.  Homozygous and hemizygous deletions of 9p centromeric to the interferon genes in lung cancer. , 1994, Cancer research.

[457]  G. Mann,et al.  Loss of heterozygosity and homozygous deletions on 9p21-22 in melanoma. , 1994, Oncogene.

[458]  E. Lander,et al.  Allelotyping of butadiene-induced lung and mammary adenocarcinomas of B6C3F1 mice: frequent losses of heterozygosity in regions homologous to human tumor-suppressor genes. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[459]  D. Carson,et al.  Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers , 1994, Nature.

[460]  O. Olopade,et al.  Homozygous deletions within chromosomal bands 9p21-22 in bladder cancer. , 1994, Cancer research.

[461]  M. Skolnick,et al.  A cell cycle regulator potentially involved in genesis of many tumor types. , 1994, Science.

[462]  D. Sidransky,et al.  Homozygous deletions of 9p21 in primary human bladder tumors detected by comparative multiplex polymerase chain reaction. , 1994, Cancer research.

[463]  E. Harlow,et al.  Identification of G1 kinase activity for cdk6, a novel cyclin D partner , 1994, Molecular and cellular biology.

[464]  W. Clark,et al.  Linkage of cutaneous malignant melanoma/dysplastic nevi to chromosome 9p, and evidence for genetic heterogeneity. , 1994, American journal of human genetics.

[465]  R. Hruban,et al.  Allelotype of head and neck squamous cell carcinoma. , 1994, Cancer research.

[466]  J. R. Smith,et al.  Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. , 1994, Experimental cell research.

[467]  R. Hruban,et al.  Frequent loss of chromosome 9p21-22 early in head and neck cancer progression. , 1994, Cancer research.

[468]  O. Olopade,et al.  Distinct deletions of chromosome 9p associated with melanoma versus glioma, lung cancer, and leukemia. , 1994, Cancer research.

[469]  G. Peters The D-type cyclins and their role in tumorigenesis , 1994, Journal of Cell Science.

[470]  S. van den Heuvel,et al.  Distinct roles for cyclin-dependent kinases in cell cycle control. , 1993, Science.

[471]  G. Hannon,et al.  A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4 , 1993, Nature.

[472]  P. Bork Hundreds of ankyrin‐like repeats in functionally diverse proteins: Mobile modules that cross phyla horizontally? , 1993, Proteins.

[473]  D. Sidransky,et al.  Evidence for two bladder cancer suppressor loci on human chromosome 9. , 1993, Cancer research.

[474]  J. Weber,et al.  Confirmation of chromosome 9p linkage in familial melanoma. , 1993, American journal of human genetics.

[475]  S. Lerner,et al.  Role of chromosome 9 in human bladder cancer. , 1993, Cancer research.

[476]  J. Tomaszewski,et al.  Characterization of chromosome 9 deletions in transitional cell carcinoma by microsatellite assay. , 1993, Human molecular genetics.

[477]  V. P. Collins,et al.  Localization of chromosome 9p homozygous deletions in glioma cell lines with markers constituting a continuous linkage group. , 1993, Cancer research.

[478]  D. Beach,et al.  Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. , 1993, Genes & development.

[479]  S. Shurtleff,et al.  Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. , 1993, Genes & development.

[480]  J. Weber,et al.  Linkage analysis in Dutch familial atypical multiple mole-melanoma (FAMMM) syndrome families. Effect of naevus count. , 1993, Melanoma research.

[481]  D. Housman,et al.  Molecular definition of a chromosome 9p21 germ-line deletion in a woman with multiple melanomas and a plexiform neurofibroma: implications for 9p tumor-suppressor gene(s). , 1993, American journal of human genetics.

[482]  David M. Livingston,et al.  Functional interactions of the retinoblastoma protein with mammalian D-type cyclins , 1993, Cell.

[483]  M. Pagano,et al.  Cyclin D1 is a nuclear protein required for cell cycle progression in G1. , 1993, Genes & development.

[484]  O. Garson,et al.  Molecular deletion of 9p sequences in non‐small cell lung cancer and malignant mesothelioma , 1993, Genes, chromosomes & cancer.

[485]  M. Ewen,et al.  Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. , 1993, Genes & development.

[486]  F. C. Lucibello,et al.  Human cyclin D1 encodes a labile nuclear protein whose synthesis is directly induced by growth factors and suppressed by cyclic AMP. , 1993, Journal of cell science.

[487]  M. Skolnick,et al.  Assignment of a locus for familial melanoma, MLM, to chromosome 9p13-p22. , 1992, Science.

[488]  J. Kirkwood,et al.  Homozygous deletions within human chromosome band 9p21 in melanoma. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[489]  Steven K. Hanks,et al.  Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins , 1992, Cell.

[490]  O. Olopade,et al.  Mapping of the shortest region of overlap of deletions of the short arm of chromosome 9 associated with human neoplasia. , 1992, Genomics.

[491]  D. Housman,et al.  Genetic and physical map of the interferon region on chromosome 9p. , 1992, Genomics.

[492]  A. Knudson,et al.  Localization of the interferon-α gene cluster to rat chromosome bands 5q31→q33 by fluorescence in situ hybridization , 1992 .

[493]  O. Olopade,et al.  Molecular analysis of deletions of the short arm of chromosome 9 in human gliomas. , 1992, Cancer research.

[494]  A. Godwin,et al.  Spontaneous transformation of rat ovarian surface epithelial cells: association with cytogenetic changes and implications of repeated ovulation in the etiology of ovarian cancer. , 1992, Journal of the National Cancer Institute.

[495]  J. Shay,et al.  A role for both RB and p53 in the regulation of human cellular senescence. , 1991, Experimental cell research.

[496]  A. Knudson,et al.  Hereditary renal cell carcinoma in the rat associated with nonrandom loss of chromosomes 5 and 6. , 1991, Cancer research.

[497]  T. Waltz,et al.  Absence of methylthioadenosine phosphorylase in human gliomas. , 1991, Cancer research.

[498]  S. Goldstein Replicative senescence: the human fibroblast comes of age. , 1990, Science.

[499]  L. Irving,et al.  Cytogenetics of non‐small cell lung cancer: Analysis of consistent non‐random abnormalities , 1990, Genes, chromosomes & cancer.

[500]  M. Genet,et al.  Assignment of 12 loci to rat chromosome 5: evidence that this chromosome is homologous to mouse chromosome 4 and to human chromosomes 9 and 1 (1p arm). , 1990, Genomics.

[501]  J. Allalunis-Turner,et al.  Absence of IFNA and IFNB genes from human malignant glioma cell lines and lack of correlation with cellular sensitivity to interferons. , 1990, Cancer research.

[502]  R. Larson,et al.  Deletions of interferon genes in acute lymphoblastic leukemia. , 1990, The New England journal of medicine.

[503]  A. Pardee G1 events and regulation of cell proliferation. , 1989, Science.

[504]  G. Levan,et al.  A gene for the suppression of anchorage independence is located in rat chromosome 5 bands q22-23, and the rat alpha-interferon locus maps at the same region. , 1989, Journal of cell science.

[505]  U. Francke,et al.  Cytogenetic analysis of melanocytes from premalignant nevi and melanomas. , 1988, Journal of the National Cancer Institute.

[506]  J. Rowley,et al.  Homozygous deletion of the alpha- and beta 1-interferon genes in human leukemia and derived cell lines. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[507]  H. Harris The Analysis of Malignancy by Cell Fusion: the Position in Updated Version Citing Articles E-mail Alerts , 2013 .

[508]  J. Mosca,et al.  Transcriptional and posttranscriptional regulation of exogenous human beta interferon gene in simian cells defective in interferon synthesis , 1986, Molecular and cellular biology.

[509]  A. Bird CpG-rich islands and the function of DNA methylation , 1986, Nature.

[510]  R. Eddy,et al.  Assignment of the gene for methylthioadenosine phosphorylase to human chromosome 9 by mouse-human somatic cell hybridization. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[511]  A. Sandberg,et al.  A possible subgroup of ALL with 9p-. , 1983, Cancer genetics and cytogenetics.

[512]  N. Kamatani,et al.  Deficiency of methylthioadenosine phosphorylase in human leukemic cells in vivo. , 1982, Blood.

[513]  J. Trent,et al.  Chromosomal localization of human leukocyte, fibroblast, and immune interferon genes by means of in situ hybridization. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[514]  W. Rutter,et al.  Leukocyte and fibroblast interferon genes are located on human chromosome 9. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[515]  S. Povey,et al.  The analysis of malignancy by cell fusion. VII. Cytogenetic analysis of hybrids between malignant and diploid cells and of tumours derived from them. , 1977, Journal of cell science.

[516]  A. Knudson Mutation and cancer: statistical study of retinoblastoma. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[517]  L. Hayflick THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL STRAINS. , 1965, Experimental cell research.

[518]  R. Marmorstein,et al.  Crystal structure of the CDK4/6 inhibitory protein p18INK4c provides insights into ankyrin-like repeat structure/function and tumor-derived p16INK4 mutations , 1998, Nature Structural Biology.

[519]  A. Sober,et al.  Novel mutations in the p16/CDKN2A binding region of the cyclin-dependent kinase-4 gene. , 1998, Cancer research.

[520]  E. Campo,et al.  Deletions and loss of expression of p16INK4a and p21Waf1 genes are associated with aggressive variants of mantle cell lymphomas. , 1997, Blood.

[521]  S. Lippman,et al.  Frequent inactivation of p16INK4a in oral premalignant lesions , 1997, Oncogene.

[522]  W. Franklin,et al.  Identification of a novel region of homozygous deletion on chromosome 9p in squamous cell carcinoma of the lung: the location of a putative tumor suppressor gene. , 1997, Cancer research.

[523]  T. Sano,et al.  Infrequent mutations of p16INK4A and p15INK4B genes in human pituitary adenomas. , 1997, European journal of endocrinology.

[524]  K. Ichimura,et al.  Infrequent methylation of CDKN2A(MTS1/p16) and rare mutation of both CDKN2A and CDKN2B(MTS2/p15) in primary astrocytic tumours. , 1997, British journal of cancer.

[525]  M. Roussel,et al.  Features of macrophage differentiation induced by p19INK4d, a specific inhibitor of cyclin D-dependent kinases. , 1997, Blood.

[526]  A. Takaoka,et al.  Infrequent alterations of the p16 (MTS-1) gene in human gastric cancer. , 1997, Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine.

[527]  J. Yokota,et al.  Growth suppression of non-small cell lung carcinoma cells by the introduction of the p16(INK4A) gene. , 1997, International journal of oncology.

[528]  J. Bartek,et al.  Potential role for concurrent abnormalities of the cyclin D1, p16CDKN2 and p15CDKN2B genes in certain B cell non-Hodgkin’s lymphomas. Functional studies in a cell line (Granta 519) , 1997, Leukemia.

[529]  S. Belinsky,et al.  Deletion and differential expression of p16INK4a in mouse lung tumors. , 1997, Carcinogenesis.

[530]  M. Fey,et al.  Expression and regulation of G1 cell-cycle inhibitors (p16INK4A , p15INK4B, p18 INK4C, p19INK4D ) in human acute myeloid leukemia and normal myeloid cells , 1997, Leukemia.

[531]  D. Louis,et al.  CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. , 1996, Cancer research.

[532]  N. Hayward,et al.  Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma , 1996, Nature Genetics.

[533]  D. Louis,et al.  Homozygous deletions of the CDKN2/p16 gene in dural hemangiopericytomas , 1996, Acta Neuropathologica.

[534]  T. Yoneda,et al.  Comparative analysis of p16/CDKN2, p53 and ras gene alterations in human non-small cell lung cancers, with and without associated pulmonary asbestosis. , 1996, International journal of oncology.

[535]  T. Savarese,et al.  Codeletion of the genes for p16INK4, methylthioadenosine phosphorylase, interferon-alpha1, interferon-beta1, and other 9p21 markers in human malignant cell lines. , 1996, Cancer genetics and cytogenetics.

[536]  H. Koeffler,et al.  p16 (CDKN2/cyclin-dependent kinase-4 inhibitor/multiple tumor suppressor-1) gene is not altered in uterine cervical carcinomas or cell lines. , 1996, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc.

[537]  C. O'keefe,et al.  Isolation and characterization of p19INK4d, a p16-related inhibitor specific to CDK6 and CDK4. , 1996, Molecular biology of the cell.

[538]  Dracopoli Nc,et al.  CDKN2 mutations in melanoma. , 1996 .

[539]  M. You,et al.  The 5′-flanking region of the E1 α form of the murine p16INK4a (MTS1) gene ☆ , 1996 .

[540]  G. Peters,et al.  Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. , 1996, Advances in cancer research.

[541]  P. Ambros,et al.  Loss of the p16/MTS1 tumor suppressor gene causes E2F-mediated deregulation of essential enzymes of the DNA precursor metabolism. , 1996, DNA and cell biology.

[542]  N. Konishi,et al.  Detection of RB, p16/CDKN2 and p15(INK4B) gene alterations with immunohistochemical studies in human prostate carcinomas. , 1996, International journal of oncology.

[543]  S. Bohlander,et al.  TEL-AML1 translocations with TEL and CDKN2 inactivation in acute lymphoblastic leukemia cell lines. , 1996, Blood.

[544]  P. Zhao,et al.  Abnormal location of p16 protein and overexpression of p53 protein in human radiation-induced skin cancer. , 1995, Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer.

[545]  S. Povey,et al.  Comparative mapping of 50 human chromosome 9 loci in the laboratory mouse. , 1995, Genomics.

[546]  Y. Ishii,et al.  A Case of Malignant Mesothelioma with Abnormal CDKN2 Gene Accompanied by Malignant Melanoma. , 1995 .

[547]  T. Shuin,et al.  Infrequent somatic mutations of the p16 and p15 genes in human bladder cancer: p16 mutations occur only in low-grade and superficial bladder cancers. , 1995, Oncology research.

[548]  E. Lees Cyclin dependent kinase regulation. , 1995, Current opinion in cell biology.

[549]  A. Kaye,et al.  Homozygous deletions of the multiple tumor suppressor gene 1 in the progression of human astrocytomas. , 1995, Cancer research.

[550]  F. Kaye,et al.  Absence of p16INK4 protein is restricted to the subset of lung cancer lines that retains wildtype RB. , 1994, Oncogene.

[551]  A. Knudson,et al.  Spontaneous and radiation-induced renal tumors in the Eker rat model of dominantly inherited cancer. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[552]  H. Klinger Suppression of tumorigenicity. , 1982, Cytogenetics and cell genetics.