Scale Selection for Compact Scale-Space Representation of Vector-Valued Images

This paper investigates the scale selection problem for vector-valued nonlinear diffusion scale-spaces. We present a new approach for the localization scale selection, which aims at maximizing the image content's presence by finding the scale having a maximum correlation with the noise-free image. For scale-space discretization, we propose to address an adaptation of the optimal diffusion stopping time criterion introduced by Mrazek and Navara [1], in such a way that it identifies multiple scales of importance.

[1]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[2]  Wenyuan Xu,et al.  Behavioral analysis of anisotropic diffusion in image processing , 1996, IEEE Trans. Image Process..

[3]  Hichem Sahli,et al.  Multiscale gradient watersheds of color images , 2003, IEEE Trans. Image Process..

[4]  Hichem Sahli,et al.  Low level image partitioning guided by the gradient watershed hierarchy , 1999, Signal Process..

[5]  Pierre Vandergheynst,et al.  Multiresolution segmentation of natural images: from linear to nonlinear scale-space representations , 2004, IEEE Transactions on Image Processing.

[6]  Yehoshua Y. Zeevi,et al.  Estimation of optimal PDE-based denoising in the SNR sense , 2006, IEEE Transactions on Image Processing.

[7]  Joachim Weickert,et al.  Coherence-enhancing diffusion of colour images , 1999, Image Vis. Comput..

[8]  F. Hampel The Influence Curve and Its Role in Robust Estimation , 1974 .

[9]  J. Weickert,et al.  Information Measures in Scale-Spaces , 1999, IEEE Trans. Inf. Theory.

[10]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Hichem Sahli,et al.  A hierarchical Markovian model for multiscale region-based classification of vector-valued images , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[12]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[13]  Guido Gerig,et al.  Vector-Valued Diffusion , 1994, Geometry-Driven Diffusion in Computer Vision.

[14]  Shree K. Nayar,et al.  Resolution Selection Using Generalized Entropies of Multiresolution Histograms , 2002, ECCV.

[15]  Pavel Mrázek,et al.  Selection of Optimal Stopping Time for Nonlinear Diffusion Filtering , 2001, International Journal of Computer Vision.

[16]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[17]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[19]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[20]  Pavel Mrázek Selection of Optimal Stopping Time for Nonlinear Diffusion Filtering , 2001, Scale-Space.

[21]  Panos E. Trahanias,et al.  Generalized scale-selection , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[22]  Zhouchen Lin,et al.  An anisotropic diffusion PDE for noise reduction and thin edge preservation , 1999, Proceedings 10th International Conference on Image Analysis and Processing.