Textile composites: modelling strategies

Textile materials are characterised by the distinct hierarchy of structure, which should be represented by a model of textile geometry and mechanical behaviour. In spite of a profound investigation of textile materials and a number of theoretical models existing in the textile literature for different structures, a model covering all structures typical for composite reinforcements is not available. Hence the challenge addressed in the present work is to take full advantage of the hierarchical principle of textile modelling, creating a truly integrated modelling and design tool for textile composites. It allows handling of complex textile structure computations in computer time counted by minutes instead of hours of the same non-linear, non-conservative behaviour of yarns in compression and bending. The architecture of the code implementing the model corresponds to the hierarchical structure of textile materials. The model of the textile geometry serves as a base for meso-mechanical and permeability models for composites, which provide therefore simulation tools for analysis of composite processing and properties.

[1]  Ignace Verpoest,et al.  Compression of Woven Reinforcements: A Mathematical Model , 2000 .

[2]  Richard S. Parnas,et al.  The effect of heterogeneous porous media on mold filling in resin transfer molding , 1991 .

[3]  Jacob Aboudi,et al.  Micromechanical Analysis of Composites by the Method of Cells , 1989 .

[4]  Stepan Vladimirovitch Lomov,et al.  Measurement of the thread resistance to twisting and the critical snarl formation parameters , 1999 .

[5]  R. Parnas Liquid Composite Molding , 2000 .

[6]  J. Hearle,et al.  11—AN ENERGY METHOD FOR CALCULATIONS IN FABRIC MECHANICS PART I: PRINCIPLES OF THE METHOD , 1978 .

[7]  Norman A. Fleck,et al.  A binary model of textile composites—I. Formulation , 1994 .

[8]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[9]  Ignace Verpoest,et al.  Textile geometry preprocessor for meso-mechanical models of woven composites , 2000 .

[10]  Stepan Vladimirovitch Lomov,et al.  Hierarchy of Textile Structures and Architecture of Fabric Geometric Models , 2001 .

[11]  F. T. Peirce The geometry of cloth structure , 1937 .

[12]  Stepan Vladimirovitch Lomov,et al.  Mathematical Modelling Of Porosity Of Plane And 3D Woven Structures , 1998 .

[13]  R. J. Harwood,et al.  The simulation of the geometry of a two-component yarn part II: Fibre distribution in the yarn cross-section , 1997 .

[14]  Ignace Verpoest,et al.  A poly-inclusion approach for the elastic modelling of knitted fabric composites , 1998 .

[15]  Jafargholi Amirbayat,et al.  Mechanics of Flexible Fibre Assemblies , 1980 .

[16]  Jan Ivens,et al.  STIFFNESS AND FAILURE MODELLING OF TEXTILE COMPOSITES , 1999 .

[17]  Stepan Vladimirovitch Lomov,et al.  A software package for the prediction of woven fabrics geometrical and mechanical properties , 1995 .

[18]  S. Kawabata,et al.  3—THE FINITE-DEFORMATION THEORY OF PLAIN-WEAVE FABRICS PART I: THE BIAXIAL-DEFORMATION THEORY , 1973 .

[19]  Stepan Vladimirovitch Lomov,et al.  A Novel Textile Composites Design AndAnalysis Tool , 1970 .

[20]  Stepan Vladimirovitch Lomov,et al.  Modellirung von drei-dimensionallen gewebe Strukturen , 1995 .

[21]  R. Postle,et al.  A General Energy Analysis of Fabric Mechanics Using Optimal Control Theory , 1978 .

[22]  Richard S. Parnas,et al.  Modeling of Microscale Flow in Unidirectional Fibrous Porous Media , 1994 .

[23]  R. J. Harwood,et al.  The simulation of the geometry of two-component yarns. Part I: The mechanics of strand compression: Simulating yarn cross-section shape , 1997 .

[24]  Ignace Verpoest,et al.  Micro-Stress Analysis of Woven Fabric Composites by Multilevel Decomposition , 1998 .

[25]  F. Phelan,et al.  Lattice Boltzmann methods for modeling microscale flow in fibrous porous media , 1997 .

[26]  Ignace Verpoest,et al.  Eigenstrain models for complex textile composites , 1998 .

[27]  Richard S. Parnas,et al.  A permeability database for composites manufacturing , 1997 .

[28]  Ignace Verpoest,et al.  Modelling the processing and properties of textile composites: an integrated approach , 2000 .

[29]  Joy P. Dunkers,et al.  Optical coherence tomography of glass reinforced polymer composites , 1999 .

[30]  Frederick R. Phelan,et al.  Analysis of transverse flow in aligned fibrous porous media , 1996 .

[31]  Joy P. Dunkers,et al.  The prediction of permeability for an epoxy/E‐glass composite using optical coherence tomographic images , 2001 .

[32]  Stepan Vladimirovitch Lomov,et al.  Integrated Model Of Textile CompositeReinforcements , 1970 .

[33]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[34]  Ignace Verpoest,et al.  Stiffness and failure modelling of textile composites using a variational approach , 1999 .

[35]  Stepan Vladimirovitch Lomov,et al.  Experimental investigation into loop forming (loss of stability) by turning of threads , 1997 .

[36]  Frederick R. Phelan,et al.  Simulation of the injection process in resin transfer molding , 1997 .

[37]  Stepan Vladimirovitch Lomov,et al.  On the problem of fancy yarn formation , 1999 .

[38]  M. Konopasek,et al.  On Some General Features of a Computer-Based System for Calculation of the Mechanics of Textile Structures , 1972 .