Accuracy improvements and investigations of a compressible second order finite volume code towards the incompressible limit

The accuracy of many existing finite volume codes, originally implemented to simulate compressible flows in the transonic or supersonic regime, often degrades as the onflow Mach number is small and tends to zero. The problem is that at low Mach number the Roe scheme or a similar formulated artificial viscosity scheme which is close to a Roe scheme present an excess of artificial viscosity which causes the loss of accuracy. The reason is that at low Mach number the stabilization terms are not of the same order as the flux terms because the wave speeds are of different magnitudes. It is the goal of this talk to present a new methodology to deal with low Mach number flows in a compressible code.

[1]  H. Guillard,et al.  On the behaviour of upwind schemes in the low Mach number limit , 1999 .

[2]  David L. Darmofal,et al.  The Importance of Eigenvectors for Local Preconditioners of the Euler Equations , 1996 .

[3]  Eli Turkel,et al.  Robust low speed preconditioning for viscous high lift flows , 2002 .

[4]  David L. Darmofal,et al.  The solution of the compressible Euler equations at low Mach numbers using a stabilized finite element algorithm , 2001 .

[5]  Stefan Langer,et al.  Agglomeration multigrid methods with implicit Runge-Kutta smoothers applied to aerodynamic simulations on unstructured grids , 2014, J. Comput. Phys..

[6]  Cord-Christian Rossow,et al.  Convergence Acceleration for Solving the Compressible Navier-Stokes Equations , 2006 .

[7]  Cord-Christian Rossow,et al.  Extension of a Compressible Code Toward the Incompressible Limit , 2003 .

[8]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[9]  E. Turkel,et al.  PRECONDITIONING TECHNIQUES IN COMPUTATIONAL FLUID DYNAMICS , 1999 .

[10]  Eli Turkel,et al.  PRECONDITIONING-SQUARED METHODS FOR MULTIDIMENSIONAL AERODYNAMICS , 1997 .

[11]  Stefan Langer,et al.  Steady-state laminar flow solutions for NACA 0012 airfoil , 2016 .

[12]  Eli Turkel,et al.  Choice of Variables and Preconditioning for Time Dependent problems , 2003 .

[13]  C. J. Roy,et al.  Verification and Validation of RANS Turbulence Models in Commercial Flow Solvers , 2012 .

[14]  E. Turkel,et al.  Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .

[15]  Eli Turkel,et al.  Convergence acceleration of Runge-Kutta schemes for solving the Navier-Stokes equations , 2007, J. Comput. Phys..

[16]  S. Ukai The incompressible limit and the initial layer of the compressible Euler equation , 1986 .

[17]  Stefan Langer,et al.  Investigation and application of point implicit Runge–Kutta methods to inviscid flow problems , 2012 .

[18]  Anthony E. Washburn,et al.  Trapezoidal Wing Experimental Repeatability and Velocity Profiles in the 14- by 22-Foot Subsonic Tunnel , 2012 .

[19]  K. Asano On the incompressible limit of the compressible Euler equation , 1987 .

[20]  Eli Turkel,et al.  Preconditioning for Numerical Simulation of Low Mach Number Three-Dimensional Viscous Turbomachinery Flows , 1997 .

[21]  R. C. Swanson,et al.  An efficient solver for the RANS equations and a one-equation turbulence model , 2011 .

[22]  Venkat Venkatakrishnan,et al.  Numerical Evidence of Multiple Solutions for the Reynolds-Averaged Navier–Stokes Equations , 2014 .

[23]  Eli Turkel,et al.  Assessment of Preconditioning Methods for Multidimensional Aerodynamics , 1997 .

[24]  A. Majda,et al.  Compressible and incompressible fluids , 1982 .

[25]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[26]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[27]  C. L. Rumsey,et al.  Summary of the First AIAA CFD High Lift Prediction Workshop (invited) , 2011 .

[28]  V. Vatsa,et al.  ASSESSMENT OF LOCAL PRECONDITIONERS FOR STEADY STATE AND TIME DEPENDENT FLOWS , 2004 .

[29]  Cord-Christian Rossow,et al.  Efficient computation of compressible and incompressible flows , 2007, J. Comput. Phys..

[30]  C. L. Merkle,et al.  The application of preconditioning in viscous flows , 1993 .

[31]  A. Majda,et al.  Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .

[32]  John C. Vassberg,et al.  A Unified Baseline Grid about the Common Research Model Wing-Body for the Fifth AIAA CFD Drag Prediction Workshop , 2011 .

[33]  Norbert Kroll,et al.  Investigation and Comparison of Implicit Smoothers Applied in Agglomeration Multigrid , 2015 .