Combining least-squares regressions: an upper-bound on mean-squared error
暂无分享,去创建一个
[1] A. Barron. Are Bayes Rules Consistent in Information , 1987 .
[2] R. Beran,et al. Modulation Estimators and Confidence Sets , 1998 .
[3] Yale Unversity. Improving Regression through Model Mixing , 2004 .
[4] K. Burnham,et al. Model selection: An integral part of inference , 1997 .
[5] Julio L. Peixoto,et al. Comparisons of Alternative Predictors under the Balanced One-Way Random Model , 1986 .
[6] C. L. Mallows. Some comments on C_p , 1973 .
[7] E. L. Lehmann,et al. Theory of point estimation , 1950 .
[8] H. Akaike,et al. Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .
[9] Alexandre B. Tsybakov,et al. Optimal Rates of Aggregation , 2003, COLT.
[10] C. Stein. Estimation of the Mean of a Multivariate Normal Distribution , 1981 .
[11] C. Mallows. More comments on C p , 1995 .
[12] Yuhong Yang. Combining Different Procedures for Adaptive Regression , 2000, Journal of Multivariate Analysis.
[13] Yuhong Yang. COMBINING FORECASTING PROCEDURES: SOME THEORETICAL RESULTS , 2004, Econometric Theory.
[14] E. George. Minimax Multiple Shrinkage Estimation , 1986 .
[15] O. Catoni. The Mixture Approach to Universal Model Selection , 1997 .
[16] E. George. Combining Minimax Shrinkage Estimators , 1986 .
[17] Thomas M. Cover,et al. Elements of Information Theory , 2005 .