Magnetic anisotropy and spin-parity effect along the series of lanthanide complexes with DOTA.

Spotting trends: Upon going from Tb(III) to Yb(III) centers in the complexes of the DOTA(4-) ligand, a reorientation of the easy axis of magnetization from perpendicular to parallel to the Ln-O bond of the apical water molecule is experimentally observed and theoretically predicted (SMM=single-molecule magnet). Only ions with an odd number of electrons show slow relaxation of the magnetization.

[1]  R. Sessoli,et al.  Lanthanides in molecular magnetism: so fascinating, so challenging. , 2012, Dalton transactions.

[2]  Pengfei Yan,et al.  Ytterbium can relax slowly too: a field-induced Yb2 single-molecule magnet. , 2012, Dalton transactions.

[3]  W. Wernsdorfer,et al.  Electronic read-out of a single nuclear spin using a molecular spin transistor , 2012, Nature.

[4]  W. Wernsdorfer,et al.  A six-coordinate ytterbium complex exhibiting easy-plane anisotropy and field-induced single-ion magnet behavior. , 2012, Inorganic chemistry.

[5]  F. Tuna,et al.  A high anisotropy barrier in a sulfur-bridged organodysprosium single-molecule magnet. , 2012, Angewandte Chemie.

[6]  M. Murugesu The orientation is in the details , 2012, Nature Chemistry.

[7]  W. Wernsdorfer,et al.  Heterometallic CuII/DyIII 1D chiral polymers: chirogenesis and exchange coupling of toroidal moments in trinuclear Dy3 single molecule magnets , 2012 .

[8]  Song Gao,et al.  Series of lanthanide organometallic single-ion magnets. , 2012, Inorganic chemistry.

[9]  A. Caneschi,et al.  Magnetic anisotropy in a dysprosium/DOTA single-molecule magnet: beyond simple magneto-structural correlations. , 2012, Angewandte Chemie.

[10]  Fu-Sheng Guo,et al.  The first {Dy4} single-molecule magnet with a toroidal magnetic moment in the ground state. , 2012, Inorganic chemistry.

[11]  Liviu F Chibotaru,et al.  Magnetic anisotropy in the excited states of low symmetry lanthanide complexes. , 2011, Physical chemistry chemical physics : PCCP.

[12]  A. Powell,et al.  A family of 13 tetranuclear zinc(II)-lanthanide(III) complexes of a [3+3] Schiff-base macrocycle derived from 1,4-diformyl-2,3-dihydroxybenzene. , 2011, Dalton transactions.

[13]  J. Long,et al.  Exploiting single-ion anisotropy in the design of f-element single-molecule magnets , 2011 .

[14]  W. Wernsdorfer,et al.  Strong axiality and Ising exchange interaction suppress zero-field tunneling of magnetization of an asymmetric Dy2 single-molecule magnet. , 2011, Journal of the American Chemical Society.

[15]  W. Wernsdorfer,et al.  Supramolecular spin valves. , 2011, Nature materials.

[16]  Liviu F Chibotaru,et al.  A non-sandwiched macrocyclic monolanthanide single-molecule magnet: the key role of axiality. , 2011, Chemistry.

[17]  A. Caneschi,et al.  Giant field dependence of the low temperature relaxation of the magnetization in a dysprosium(III)-DOTA complex. , 2011, Chemical communications.

[18]  Gang Su,et al.  A mononuclear dysprosium complex featuring single-molecule-magnet behavior. , 2010, Angewandte Chemie.

[19]  A. Powell,et al.  Coupling Dy3 triangles enhances their slow magnetic relaxation. , 2010, Angewandte Chemie.

[20]  D. Drung,et al.  Spin-lattice relaxation via quantum tunneling in an Er 3 + -polyoxometalate molecular magnet , 2010 .

[21]  F. Tuna,et al.  Influence of the N-bridging ligand on magnetic relaxation in an organometallic dysprosium single-molecule magnet. , 2010, Chemistry.

[22]  Gianluca Accorsi,et al.  Design of luminescent lanthanide complexes: From molecules to highly efficient photo-emitting materials , 2010 .

[23]  E. Coronado,et al.  Mononuclear lanthanide single molecule magnets based on the polyoxometalates [Ln(W5O18)2]9- and [Ln(beta2-SiW11O39)2]13- (Ln(III) = Tb, Dy, Ho, Er, Tm, and Yb). , 2009, Inorganic chemistry.

[24]  Dante Gatteschi,et al.  Magnetic anisotropy of dysprosium(III) in a low-symmetry environment: a theoretical and experimental investigation. , 2009, Journal of the American Chemical Society.

[25]  A. Caneschi,et al.  Spin canting in a Dy-based single-chain magnet with dominant next-nearest-neighbor antiferromagnetic interactions , 2009, 0901.4409.

[26]  E. Coronado,et al.  Mononuclear lanthanide single-molecule magnets based on polyoxometalates. , 2008, Journal of the American Chemical Society.

[27]  Liviu F Chibotaru,et al.  The origin of nonmagnetic Kramers doublets in the ground state of dysprosium triangles: evidence for a toroidal magnetic moment. , 2008, Angewandte Chemie.

[28]  N. Ishikawa Single molecule magnet with single lanthanide ion , 2007 .

[29]  Nicholas J Long,et al.  Lanthanides in magnetic resonance imaging. , 2006, Chemical Society reviews.

[30]  S. Koshihara,et al.  Static magnetic-field-induced phase lag in the magnetization response of tris(dipicolinato)lanthanides. , 2006, Inorganic chemistry.

[31]  W. Wernsdorfer,et al.  Quantum phase interference and spin-parity in Mn12 single-molecule magnets. , 2005, Physical review letters.

[32]  S. Koshihara,et al.  Mononuclear Lanthanide Complexes with a Long Magnetization Relaxation Time at High Temperatures: A New Category of Magnets at the Single-Molecular Level , 2004 .

[33]  B. Roos,et al.  Molcas: a program package for computational chemistry. , 2003 .

[34]  S. Koshihara,et al.  Lanthanide double-decker complexes functioning as magnets at the single-molecular level. , 2003, Journal of the American Chemical Society.

[35]  Bernd Schimmelpfennig,et al.  The restricted active space (RAS) state interaction approach with spin-orbit coupling , 2002 .

[36]  A. Caneschi,et al.  Cobalt(II)-Nitronyl Nitroxide Chains as Molecular Magnetic Nanowires The financial support of Italian MURST and CNR and of Brazilian CNPq and FUJB is acknowledged. The support from the European Community through the TMR program 3MD (contract no ERB4061PL97-0197) is also acknowledged. , 2001, Angewandte Chemie.

[37]  D. Gatteschi Single-molecule Magnets , 2000 .

[38]  M. Botta,et al.  A holmium complex of a macrocyclic ligand (DOTA) and its isostructural europium analogue , 1999 .

[39]  H. Casimir,et al.  Note on the thermodynamic interpretation of paramagnetic relaxation phenomena , 1938 .