Induction of chiral porous solids containing only achiral building blocks.

[1]  S. Tulashie The Potential of Chiral Solvents in Enantioselective Crystallization , 2010 .

[2]  P. Feng,et al.  A tale of three carboxylates: cooperative asymmetric crystallization of a three-dimensional microporous framework from achiral precursors. , 2010, Angewandte Chemie.

[3]  R. Purrello,et al.  Vortexes and nanoscale chirality. , 2010, Angewandte Chemie.

[4]  Elias Vlieg,et al.  From Ostwald ripening to single chirality. , 2009, Angewandte Chemie.

[5]  Theo Rasing,et al.  Complete chiral symmetry breaking of an amino acid derivative directed by circularly polarized light. , 2009, Nature chemistry.

[6]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[7]  F. Leusen,et al.  Predicting spontaneous racemate resolution using recent developments in crystal structure prediction , 2009 .

[8]  H. D. Flack,et al.  Louis Pasteur's discovery of molecular chirality and spontaneous resolution in 1848, together with a complete review of his crystallographic and chemical work. , 2009, Acta crystallographica. Section A, Foundations of crystallography.

[9]  X. Bu,et al.  Nucleotide-catalyzed conversion of racemic zeolite-type zincophosphate into enantioenriched crystals. , 2009, Angewandte Chemie.

[10]  A. Jansen,et al.  Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces. , 2009, Nature chemistry.

[11]  John S. O. Evans,et al.  Chemically blockable transformation and ultraselective low-pressure gas adsorption in a non-porous metal organic framework. , 2009, Nature chemistry.

[12]  Russell E Morris,et al.  Ionothermal synthesis--ionic liquids as functional solvents in the preparation of crystalline materials. , 2009, Chemical communications.

[13]  H. Hug,et al.  Switching the chirality of single adsorbate complexes. , 2009, Angewandte Chemie.

[14]  Manuel Moliner,et al.  The ITQ-37 mesoporous chiral zeolite , 2009, Nature.

[15]  Omar M Yaghi,et al.  The pervasive chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[16]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[17]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[18]  D. Avnir,et al.  Chiral silicate zeolites , 2009 .

[19]  J. Lewiński,et al.  Metal complexes of cinchonine as chiral building blocks: a strategy for the construction of nanotubular architectures and helical coordination polymers. , 2009, Journal of the American Chemical Society.

[20]  A. Seidel-Morgenstern,et al.  Potential of Chiral Solvents for Enantioselective Crystallization. 2. Evaluation of Kinetic Effects , 2009 .

[21]  Jihong Yu,et al.  Heteroatom-stabilized chiral framework of aluminophosphate molecular sieves. , 2009, Angewandte Chemie.

[22]  Patrick J. Walsh Fundamentals Of Asymmetric Catalysis , 2008 .

[23]  P. Feng,et al.  Homochiral crystallization of microporous framework materials from achiral precursors by chiral catalysis. , 2008, Journal of the American Chemical Society.

[24]  Jihong Yu,et al.  Chiral zeolitic materials: structural insights and synthetic challenges , 2008 .

[25]  A. Seidel-Morgenstern,et al.  Potential of Chiral Solvents for Enantioselective Crystallization. 1. Evaluation of Thermodynamic Effects , 2008 .

[26]  Alistair C. McKinlay,et al.  Exceptional behavior over the whole adsorption-storage-delivery cycle for NO in porous metal organic frameworks. , 2008, Journal of the American Chemical Society.

[27]  X. Bu,et al.  Multiple functions of ionic liquids in the synthesis of three-dimensional low-connectivity homochiral and achiral frameworks. , 2008, Angewandte Chemie.

[28]  P. Wheatley,et al.  Gas storage in nanoporous materials. , 2008, Angewandte Chemie.

[29]  G. Bernardinelli,et al.  The use of X-ray crystallography to determine absolute configuration. , 2008, Chirality.

[30]  Junliang Sun,et al.  A zeolite family with chiral and achiral structures built from the same building layer. , 2008, Nature materials.

[31]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[32]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[33]  X. Bu,et al.  Manganese and magnesium homochiral materials: decoration of honeycomb channels with homochiral chains. , 2007, Journal of the American Chemical Society.

[34]  R. Morris,et al.  Anion control in the ionothermal synthesis of coordination polymers. , 2007, Journal of the American Chemical Society.

[35]  Russell E Morris,et al.  Ionothermal synthesis of zeolites, metal-organic frameworks, and inorganic-organic hybrids. , 2007, Accounts of chemical research.

[36]  Michael O'Keeffe,et al.  Designed Synthesis of 3D Covalent Organic Frameworks , 2007, Science.

[37]  A. Slawin,et al.  Chiral induction in the ionothermal synthesis of a 3-D coordination polymer. , 2007, Journal of the American Chemical Society.

[38]  C. Serre,et al.  Role of Solvent-Host Interactions That Lead to Very Large Swelling of Hybrid Frameworks , 2007, Science.

[39]  R. Rogers,et al.  Approaches to crystallization from ionic liquids: complex solvents-complex results, or, a strategy for controlled formation of new supramolecular architectures? , 2006, Chemical communications.

[40]  R. Vaidhyanathan,et al.  A family of nanoporous materials based on an amino acid backbone. , 2006, Angewandte Chemie.

[41]  R. Morris,et al.  Ionothermal synthesis using a hydrophobic ionic liquid as solvent in the preparation of a novel aluminophosphate chain structure , 2006 .

[42]  Gérard Férey,et al.  Metal-organic frameworks as efficient materials for drug delivery. , 2006, Angewandte Chemie.

[43]  A. Slawin,et al.  Ionothermal materials synthesis using unstable deep-eutectic solvents as template-delivery agents. , 2006, Angewandte Chemie.

[44]  T. Vogt,et al.  Chiral three-dimensional microporous nickel aspartate with extended Ni-O-Ni bonding. , 2006, Journal of the American Chemical Society.

[45]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.

[46]  Jihong Yu,et al.  Design of Chiral Zeolite Frameworks with Specified Channels through Constrained Assembly of Atoms , 2005 .

[47]  P. Cox,et al.  The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism , 2005 .

[48]  M J Rosseinsky,et al.  Design, chirality, and flexibility in nanoporous molecule-based materials. , 2005, Accounts of chemical research.

[49]  Omar M Yaghi,et al.  Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. , 2005, Journal of the American Chemical Society.

[50]  Paul S. Wheatley,et al.  Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues , 2004, Nature.

[51]  E. Cussen,et al.  Permanent microporosity and enantioselective sorption in a chiral open framework. , 2004, Journal of the American Chemical Society.

[52]  Lev Sarkisov,et al.  Design of new materials for methane storage. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[53]  G. Voth,et al.  On the Structure and Dynamics of Ionic Liquids , 2004 .

[54]  Wenbin Lin,et al.  Chiral porous coordination networks: rational design and applications in enantioselective processes , 2003 .

[55]  U. Siemeling,et al.  Spontaneous chiral resolution of a coordination polymer with distorted helical structure consisting of achiral building blocks. , 2003, Chemical communications.

[56]  N. V. Richardson,et al.  Enantiomeric interactions between nucleic acid bases and amino acids on solid surfaces , 2003, Nature materials.

[57]  J. Dunitz Chiral and Achiral Crystal Structures , 2003 .

[58]  Colin Camerer : Past , Present , Future , 2003 .

[59]  D. Amabilino,et al.  Spontaneous resolution under supramolecular control. , 2002, Chemical Society reviews.

[60]  Jordi Rius,et al.  A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst , 2002, Nature.

[61]  Mark E. Davis Ordered porous materials for emerging applications , 2002, Nature.

[62]  P. Lightfoot,et al.  The location and ordering of fluoride ions in pure silica zeolites with framework types IFR and STF; implications for the mechanism of zeolite synthesis in fluoride media. , 2001, Journal of the American Chemical Society.

[63]  Galen D. Stucky,et al.  05-O-05-Very open microporous materials: from concept to reality , 2001 .

[64]  S. Teat,et al.  Imposition of Polarity on a Centrosymmetric Zeolite Host: The Effect of Fluoride Ions on Template Ordering in Zeolite IFR , 2000 .

[65]  Andrea Prior,et al.  A Versatile Family of Interconvertible Microporous Chiral Molecular Frameworks: The First Example of Ligand Control of Network Chirality , 2000 .

[66]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[67]  Cheetham,et al.  Open-Framework Inorganic Materials. , 1999, Angewandte Chemie.

[68]  Y. Aoyama,et al.  Helical Coordination Polymers from Achiral Components in Crystals. Homochiral Crystallization, Homochiral Helix Winding in the Solid State, and Chirality Control by Seeding , 1999 .

[69]  A. Wilkinson,et al.  Synthesis and Characterization of a Chiral 3D-Framework Material: d-Co(en)3[H3Ga2P4O16] , 1997 .

[70]  S. Weigel,et al.  The synthesis of molecular sieves from non-aqueous solvents , 1997 .

[71]  William T. A. Harrison,et al.  NaZnPO4·H2O, an Open-Framework Sodium Zincophosphate with a New Chiral Tetrahedral Framework Topology , 1996 .

[72]  Mark E. Davis,et al.  Structure-direction in zeolite synthesis , 1995, Journal of inclusion phenomena and molecular recognition in chemistry.

[73]  Raul F. Lobo,et al.  Zeolite and molecular sieve synthesis , 1992 .

[74]  D. Kondepudi,et al.  Chiral Symmetry Breaking in Sodium Chlorate Crystallizaton , 1990, Science.

[75]  J. Newsam,et al.  Structural characterization of zeolite beta , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[76]  B. Pepper From concept to reality. , 1970, International journal of psychiatry.