Multivariate Spatial Visualization using GeoIcons and Image Charts

Spatial databases are growing in size and complexity, yet current visual data mining methods are challenged when it comes to multivariate spatial data. The specific research question addressed in this thesis is: how can spatial multivariate data be effectively visualized using an icon based non-fused co-visualization approach? The thesis presents a Python based design and implementation of a visualization program termed GeoIcon Viewer. The program incorporates two different visualization methods: GeoIcon Image Map and Region-of-Interest Image Layers Chart. The GeoIcon Image Map technique uses an icon to co-visualize up to nine attributes at a single location. The Region-of-Interest Image Layers Chart method uses a small multiples approach to support the GeoIcon Image Map technique for data with negligible value differences. The thesis demonstrates the successful implementation of the GeoIcon Viewer with a case study involving remote sensing digital image analysis of a copper deposit. With the two visualization methods and eight input attributes, the GeoIcon Viewer generated real time interactive visualization outputs that can aid a user in multivariate spatial data mining.

[1]  Daniel A. Keim,et al.  Information Visualization : Scope, Techniques and Opportunities for Geovisualization , 2004 .

[2]  Gregory Piatetsky-Shapiro,et al.  The KDD process for extracting useful knowledge from volumes of data , 1996, CACM.

[3]  Mark Gahegan,et al.  Scatterplots and scenes: visualisation techniques for exploratory spatial analysis , 1998 .

[4]  Daniel A. Keim,et al.  Hierarchical Pixel Bar Charts , 2002, IEEE Trans. Vis. Comput. Graph..

[5]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[6]  Jason Dykes,et al.  Representation and its Relationship with Cartographic Visualization , 2001 .

[7]  I. Spence,et al.  A Remarkable Scatterplot , 1993 .

[8]  Mark Lutz,et al.  Learning Python , 1999 .

[9]  Chris North,et al.  The Value of Information Visualization , 2008, Information Visualization.

[10]  A. MacEachren,et al.  Research Challenges in Geovisualization , 2001, KN - Journal of Cartography and Geographic Information.

[11]  Jiawei Han,et al.  Geographic data mining and knowledge discovery: An overview , 2009 .

[12]  Albert K. W. Yeung,et al.  Concepts And Techniques Of Geographic Information Systems , 2002 .

[13]  Daniel A. Keim,et al.  The Gridfit algorithm: an efficient and effective approach to visualizing large amounts of spatial data , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[14]  Jason Dykes,et al.  Exploring spatial data representation with dynamic graphics , 1997 .

[15]  Michael F. Worboys,et al.  GIS : a computing perspective , 2004 .

[16]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[17]  Tony Hernandez,et al.  Enhancing retail location decision support: The development and application of geovisualization , 2007 .

[18]  Jin Chen,et al.  A Visualization System for Space-Time and Multivariate Patterns (VIS-STAMP) , 2006, IEEE Transactions on Visualization and Computer Graphics.

[19]  Timothy C. Coburn,et al.  GIS and Multicriteria Decision Analysis , 2000 .

[20]  Diansheng Guo,et al.  Coordinating Computational and Visual Approaches for Interactive Feature Selection and Multivariate Clustering , 2003, Inf. Vis..

[21]  Martin Charlton,et al.  GIS and exploratory spatial data analysis: an overview of some research issues , 1994 .

[22]  David S. Ebert,et al.  Bristle Maps: A Multivariate Abstraction Technique for Geovisualization , 2013, IEEE Transactions on Visualization and Computer Graphics.

[23]  Mark Gahegan,et al.  Multivariate Analysis and Geovisualization with an Integrated Geographic Knowledge Discovery Approach , 2005, Cartography and geographic information science.

[24]  M. Hashim,et al.  The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits , 2012 .

[25]  Mark Gahegan,et al.  The Integration of Geographic Visualization with Knowledge Discovery in Databases and Geocomputation , 2001 .

[26]  Hans-Peter Kriegel,et al.  Visualization Techniques for Mining Large Databases: A Comparison , 1996, IEEE Trans. Knowl. Data Eng..

[27]  E. Bruce MacDougall,et al.  Exploratory Analysis, Dynamic Statistical Visualization, and Geographic Information Systems , 1992 .

[28]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .

[29]  Edward R. Tufte,et al.  Envisioning Information , 1990 .

[30]  Daniel A. Keim,et al.  HD-Eye: Visual Mining of High-Dimensional Data , 1999, IEEE Computer Graphics and Applications.

[31]  Dawn Youngblood,et al.  Cartographic Relief Presentation , 2010 .

[32]  M. J. Kraak Map use: reading, analysis, interpretation , 2013 .

[33]  Y. Ninomiya,et al.  Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data , 2005 .