Prevalence of strong bottom currents in the greater Agulhas system

Deep current meter data and output from two high‐resolution global ocean circulation models are used to determine the prevalence and location of strong bottom currents in the greater Agulhas Current system. The two models and current meter data are remarkably consistent, showing that benthic storms, with bottom currents greater than 0.2 m s−1, occur throughout the Agulhas retroflection region south of Africa more than 20% of the time. Furthermore, beneath the mean Agulhas Current core and the retroflection front, bottom currents exceed 0.2 m s−1 more than 50% of the time, while away from strong surface currents, bottom currents rarely exceed 0.2 m s−1. Implications for sediment transport are discussed and the results are compared to atmospheric storms. Benthic storms of this strength (0.2 m s−1) are comparable to a 9 m s−1 (Beaufort 5) windstorm, but scaling shows that benthic storms may be less effective at lifting and transporting sediment than dust storms.

[1]  S. Bishop,et al.  Evidence of Bottom-Trapped Currents in the Kuroshio Extension Region , 2012 .

[2]  L. Beal,et al.  On the role of the Agulhas system in ocean circulation and climate , 2011, Nature.

[3]  Olaf Boebel,et al.  Progressing towards global sustained deep ocean observations , 2010 .

[4]  L. Rainville,et al.  Distribution of deep near-inertial waves observed in the Kuroshio Extension , 2010 .

[5]  C. Reason,et al.  Investigating the Global Impacts of the Agulhas Current , 2010 .

[6]  Christian Mohn,et al.  Motion, Commotion, and Biophysical Connections at Deep Ocean Seamounts , 2010 .

[7]  T. Chereskin,et al.  Strong bottom currents and cyclogenesis in Drake Passage , 2009 .

[8]  L. Beal,et al.  Variability and coherence of the Agulhas Undercurrent in a High-resolution Ocean General Circulation Model , 2009 .

[9]  Stephen G. Yeager,et al.  The global climatology of an interannually varying air–sea flux data set , 2009 .

[10]  Ayon Sen,et al.  Estimates of bottom flows and bottom boundary layer dissipation of the oceanic general circulation from global high-resolution models , 2009 .

[11]  J. R. E. Lutjeharms,et al.  Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation , 2008, Nature.

[12]  Shang-Ping Xie,et al.  Mapping High Sea Winds from Space: A Global Climatology , 2007 .

[13]  G. Uenzelmann‐Neben,et al.  Seismostratigraphic analysis of the Transkei Basin: A history of deep sea current controlled sedimentation , 2007 .

[14]  J. Bane,et al.  Erratum: ``Cyclogenesis in the deep ocean beneath the Gulf Stream, 1, Description'' , 1999 .

[15]  Harry L. Bryden,et al.  The velocity and vorticity structure of the Agulhas Current at 32°S , 1999 .

[16]  R. Pollard,et al.  Deep inflow into the Mozambique Basin , 1999 .

[17]  Anand Gnanadesikan,et al.  Transient Response in a Z-Level Ocean Model That Resolves Topography with Partial Cells , 1998 .

[18]  D. Chelton,et al.  Geographical Variability of the First Baroclinic Rossby Radius of Deformation , 1998 .

[19]  E. P. Kontar,et al.  On the benthic boundary layer's dynamics , 1997 .

[20]  M. Cronin,et al.  Eddy–Mean Flow Interaction in the Gulf Stream at 68°W. Part I: Eddy Energetics , 1996 .

[21]  M. Cronin Eddy-Mean Flow Interaction in the Gulf Stream at 68°W. Part II: Eddy Forcing on the Time-Mean Flow , 1996 .

[22]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[23]  H. Tsoar,et al.  Bagnold, R.A. 1941: The physics of blown sand and desert dunes. London: Methuen , 1994 .

[24]  J. Toole,et al.  Moored current meter, AVHRR, CTD, and drifter data from the Agulhas Current and Retroflexion region (1985-1987) Volume XLII , 1990 .

[25]  N. Hogg A note on the deep circulation of the western North Atlantic: its nature and causes , 1983 .

[26]  Martin C. Miller,et al.  Threshold of sediment motion under unidirectional currents , 1977 .

[27]  J. Luyten,et al.  Evidence for bottom-trapped topographic Rossby waves from single moorings , 1976 .

[28]  A. E. Gill,et al.  Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies , 1974 .

[29]  H. Heywood The Physics of Blown Sand and Desert Dunes , 1941, Nature.

[30]  M. Maltrud,et al.  Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records , 2010 .

[31]  C. Wunsch,et al.  Ocean Circulation Kinetic Energy: Reservoirs, Sources, and Sinks , 2009 .

[32]  G. Madec NEMO ocean engine , 2008 .

[33]  Eric Blayo,et al.  AGRIF: Adaptive grid refinement in Fortran , 2008, Comput. Geosci..

[34]  Y. Masumoto A fifty-year eddy-resolving simulation of the world ocean : Preliminary outcomes of OFES (OGCM for the Earth Simulator) , 2004 .

[35]  W. Zenk,et al.  Path and variability of the Agulhas Return Current , 2003 .