Chaotic Modelling and Simulation: Analysis of Chaotic Models, Attractors and Forms

Introduction Chaos in Differential Equations Systems Chaos in Difference Equation Systems More Complex Structures Chaos and the Universe Odds and Ends and Milestones Models and Modeling Introduction Model Construction Modeling Techniques Chaotic Analysis and Simulation Deterministic, Stochastic, and Chaotic Models The Logistic Model The Logistic Map The Bifurcation Diagram Other Models with Similar Behavior Models with Different Chaotic Behavior The GRM1 Chaotic Model Further Discussion The Delay Logistic Model Introduction Delay Difference Models Time Delay Differential Equations A More Complicated Delay Model A Delay Differential Logistic Analogue Other Delay Logistic Models Model Behavior for Large Delays Another Delay Logistic Model The Henon Model Global Period Doubling Bifurcations in the Henon Map The Cosine-Henon Model An Example of Bifurcation and Period Doubling A Differential Equation Analogue Variants of the Henon Delay Difference Equation Variants of the Henon System Equations The Holmes and Sine Delay Models Three-Dimensional and Higher-Dimensional Models Equilibrium Points and Characteristic Matrices The Lotka-Volterra Model The Arneodo Model An Autocatalytic Attractor A Four-Dimensional Autocatalytic Attractor The Rossler Model The Lorenz Model Nonchaotic Systems Conservative Systems Linear Systems Egg-Shaped Forms Symmetric Forms More Complex Forms Higher-Order Forms Rotations Introduction A Simple Rotation-Translation System of Differential Equations A Discrete Rotation-Translation Model A General Rotation-Translation Model Rotating Particles inside the Egg-Shaped Form Rotations Following an Inverse Square Law Shape and Form Introduction Isometries in Modeling Reflection and Translation Application in the Ikeda Attractor Chaotic Attractors and Rotation-Reflection Experimenting with Rotation and Reflection Chaotic Circular Forms Further Analysis Chaotic Advection The Sink Problem Noncentral Sink Two Symmetric Sinks Chaotic Forms without Space Contraction Other Chaotic Forms Complex Sinusoidal Rotation Angle A Special Rotation-Translation Model Other Rotation-Translation Models Chaos in Galaxies and Related Simulations Introduction Chaos in the Solar System Galaxy Models and Modeling Rotation-Reflection Relativity in Rotation-Translation Systems Other Relativistic Forms Galactic Clusters Relativistic Reflection-Translation Rotating Disks of Particles Rotating Particles under Distant Attracting Masses Two Equal Attracting Masses in Opposite Directions Galactic-Type Potentials and the Henon-Heiles System Introduction The Henon-Heiles System Discrete Analogues to the Henon-Heiles System Paths of Particles in the Henon-Heiles System Other Forms for the Hamiltonian The Simplest Form for the Hamiltonian Gravitational Attraction A Logarithmic Potential Hamiltonians with a Galactic Type Potential: The Contopoulos System Another Simple Hamiltonian System Odds and Ends Forced Nonlinear Oscillators The Effect of Noise in Three-Dimensional Models The Lotka-Volterra Theory for the Growth of Two Conflicting Populations The Pendulum A Special Second-Order Differential Equation Other Patterns and Chaotic Forms Milestones References List of Figures Index

[1]  David Ruelle,et al.  SOME COMMENTS ON CHEMICAL OSCILLATIONS , 1973 .

[2]  OSBORNE REYNOLDS,et al.  A Treatise on the Mathematical Theory of the Motion of Fluids , 1880, Nature.

[3]  Paul Manneville,et al.  Dissipative Structures and Weak Turbulence , 1995 .

[4]  R. F. Williams THE BIFURCATION SPACE OF THE LORENZ ATTRACTOR , 1979 .

[5]  P. Celka,et al.  Error feedback chaos synchronization: a simple way to compute the existence region of 1D chaotic attractors in 2D-maps , 1996 .

[6]  S. Pavlou,et al.  Chaotic dynamics of a food web in a chemostat. , 1999, Mathematical biosciences.

[7]  A. M. Zhabotinskii [PERIODIC COURSE OF THE OXIDATION OF MALONIC ACID IN A SOLUTION (STUDIES ON THE KINETICS OF BEOLUSOV'S REACTION)]. , 1964, Biofizika.

[8]  Theory of the period-doubling phenomenon of one-dimensional mappings based on the parameter dependence , 1981 .

[9]  L. Chua The Genesis of Chua's circuit , 1992 .

[10]  Confinor and anti-confinor in constrained “Lorenz” system , 1987 .

[11]  A. Winfree Stably Rotating Patterns of Reaction and Diffusion , 1978 .

[12]  C. Sondhauss,et al.  Ueber die Schallschwingungen der Luft in erhitzten Glasröhren und in gedeckten Pfeifen von ungleicher Weite , 1850 .

[13]  Ioannis Andreadis,et al.  On the influence of noise on the coexistence of chaotic attractors , 2000 .

[14]  Exploring deterministic chaos via unstable periodic orbits , 1987 .

[15]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[16]  R. L. Pitliya,et al.  Oscillations in Chemical Systems , 1986 .

[17]  Dynamic Buckling of Autonomous Systems Having Potential Energy Universal Unfoldings of Cuspoid Catastrophe , 1999 .

[18]  Nandu Abhyankar Nonlinearity and Chaos in Engineering Dynamics , 1996 .

[19]  Phil Diamond Chaos in Iterated Fuzzy Systems , 1994 .

[20]  Peter E. Kloeden,et al.  A survey of numerical methods for stochastic differential equations , 1989 .

[21]  E. Catsigeras Cascades of Period Doubling Bifurcations in n Dimensions , 1996 .

[22]  F. Baras,et al.  Stochastic description of a period-2 limit cycle , 1997 .

[23]  P. Riess Das Anblasen offener Röhren durch eine Flamme , 1859 .

[24]  G. Nicolis,et al.  Evidence for climatic attractors , 1987, Nature.

[25]  G. F. Kinney,et al.  The Scaling Law , 1985 .

[26]  George M. Zaslavsky,et al.  Chaotic Dynamics and the Origin of Statistical Laws , 1999 .

[27]  Drossos,et al.  Method for computing long periodic orbits of dynamical systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  C. Skiadas,et al.  Forecasting the Electricity Consumption by Applying Stochastic Modelling Techniques: The Case of Greece , 1995 .

[29]  P. Holmes Poincaré, celestial mechanics, dynamical-systems theory and “chaos” , 1990 .

[30]  P. Grassberger,et al.  Estimation of the Kolmogorov entropy from a chaotic signal , 1983 .

[31]  Pierre Collet,et al.  Universal properties of maps on an interval , 1980 .

[32]  S. M. Ulam,et al.  On Combination of Stochastic and Deterministic Processes , 1947 .

[33]  O. Rössler An equation for hyperchaos , 1979 .

[34]  G. Contopoulos The Development of Nonlinear Dynamics in Astronomy , 2001 .

[35]  M. Feigenbaum Presentation functions, fixed points, and a theory of scaling function dynamics , 1988 .

[37]  R. de la Llave,et al.  On the singularity structure of invariant curves of symplectic mappings. , 1995, Chaos.

[38]  P. Grassberger On the Hausdorff dimension of fractal attractors , 1981 .

[39]  Dimitris Kugiumtzis Correction of the correlation dimension for noisy time series , 1997 .

[40]  R. F. Williams,et al.  The structure of Lorenz attractors , 1979 .

[41]  G. Nicolis Stability and Dissipative Structures in Open Systems far from Equilibrium , 2007 .

[42]  Ikeda,et al.  Potential for mixing in quantum chaos. , 1988, Physical review letters.

[43]  L. Shilnikov,et al.  NORMAL FORMS AND LORENZ ATTRACTORS , 1993 .

[44]  G. Rowlands An approximate analytic solution of the Lorenz equations , 1983 .

[45]  M. Mackey,et al.  Probabilistic properties of deterministic systems , 1985, Acta Applicandae Mathematicae.

[46]  Yoshikazu Ikeda,et al.  Approximation of Chaotic Dynamics by Using Smaller Number of Data Based upon the Genetic Programming and Its Applications , 2000 .

[47]  P. J. Myrberg Iteration der reellen Polynome zweiten Grades III , 1964 .

[48]  O. Lanford The Strange Attractor Theory of Turbulence , 1982 .

[49]  J. Brindley,et al.  Approximation of attractors using Chebyshev polynomials , 1996 .

[50]  J. Eckmann Roads to turbulence in dissipative dynamical systems , 1981 .

[51]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[52]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[53]  Mike E. Davies,et al.  Noise reduction schemes for chaotic time series , 1994 .

[54]  D. Ruelle Ergodic theory of differentiable dynamical systems , 1979 .

[55]  Y. Kuramoto,et al.  A Reduced Model Showing Chemical Turbulence , 1976 .

[56]  J. Yorke,et al.  Strange attractors that are not chaotic , 1984 .

[57]  Gilbert T. Walker,et al.  On Periodicity in Series of Related Terms , 1931 .

[58]  H. Schuster Deterministic chaos: An introduction , 1984 .

[59]  Y. Pomeau,et al.  Intermittency in Rayleigh-Bénard convection , 1980 .

[60]  J. Elsner,et al.  Nonlinear prediction as a way of distinguishing chaos from random fractal sequences , 1992, Nature.

[61]  J. Yorke,et al.  Chaotic behavior of multidimensional difference equations , 1979 .

[62]  H. Daido Analytical Conditions for the Appearance of Homoclinic and Heteroclinic Points of a 2-dimensional Mapping: The Case of the Hénon Mapping , 1980 .

[63]  M. Golubitsky,et al.  The Hopf Bifurcation , 1985 .

[64]  J. Wisdom Chaotic behavior in the solar system , 1987 .

[65]  R. Lozi,et al.  COEXISTING CHAOTIC ATTRACTORS IN CHUA'S CIRCUIT , 1991 .

[66]  B. Chirikov Chaotic dynamics in Hamiltonian systems with divided phase space , 1983 .

[67]  I. Prigogine,et al.  Symmetry breaking and pattern selection in far-from-equilibrium systems. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Alain Arneodo,et al.  A possible new mechanism for the onset of turbulence , 1981 .

[69]  B. Dorizzi,et al.  Integrability of Hamiltonians with third‐ and fourth‐degree polynomial potentials , 1983 .

[70]  S. Smale On the differential equations of species in competition , 1976, Journal of mathematical biology.

[71]  The invariant density of a chaotic dynamical system with small noise , 1998 .

[72]  Stephen H. Davis,et al.  Coupled Lorenz oscillators , 1987 .

[73]  Hüseyin Koçak,et al.  Differential and difference equations through computer experiments , 1986 .

[74]  K. Ikeda,et al.  Optical Turbulence: Chaotic Behavior of Transmitted Light from a Ring Cavity , 1980 .

[75]  H. Dulac,et al.  Sur les cycles limites , 1923 .

[76]  P. Grassberger,et al.  Statistical mechanics: Microscopic chaos from brownian motion? , 1999, Nature.

[77]  B. Mandelbrot Statistical Methodology for Nonperiodic Cycles: From the Covariance To R/S Analysis , 1972 .

[78]  D. Ruelle Turbulence, strange attractors, and chaos , 1995 .

[79]  Grebogi,et al.  Crisis control: Preventing chaos-induced capsizing of a ship. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[80]  Cvitanovic,et al.  Periodic-orbit quantization of chaotic systems. , 1989, Physical review letters.

[81]  Mitchell J. Feigenbaum,et al.  Scaling spectra and return times of dynamical systems , 1987 .

[82]  D. Ruelle Five turbulent problems , 1983 .

[83]  J. Elsner,et al.  The weather attractor over very short timescales , 1988, Nature.

[84]  D. Ruelle Rotation numbers for diffeomorphisms and flows , 1985 .

[85]  Jerrold E. Marsden,et al.  Horseshoes in perturbations of Hamiltonian systems with two degrees of freedom , 1982 .

[86]  Michael C. Mackey,et al.  From Clocks to Chaos , 1988 .

[87]  Tomasz Kapitaniak,et al.  On strange nonchaotic attractors and their dimensions , 1991 .

[88]  B. Derrida,et al.  Feigenbaum's ratios of two-dimensional area preserving maps , 1980 .

[89]  D Michelson,et al.  Steady solutions of the Kuramoto-Sivashinsky equation , 1986 .

[90]  G. Contopoulos,et al.  Approximations of the 3-particle toda lattice , 1987 .

[91]  Otto E. Rössler,et al.  Analytical Properties of Poincaré Halfmaps in a Class of Piecewise-Linear Dynamical Systems , 1985 .

[92]  B. Nevitt,et al.  Coping With Chaos , 1991, Proceedings of the 1991 International Symposium on Technology and Society - ISTAS `91.

[93]  G. M. Zaslavskii Physics of Chaos in Hamiltonian Systems , 1998 .

[94]  G. Nicolis,et al.  Morphogenesis in an asymmetric medium , 1987, Bulletin of mathematical biology.

[95]  T. L. Carroll Noise-resistant chaotic maps. , 2002, Chaos.

[96]  Monika Sharma,et al.  Chemical oscillations , 2006 .

[97]  N. MacDonald Noisy chaos , 1980, Nature.

[98]  Nicolis Dynamics of error growth in unstable systems. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[99]  Philip Holmes,et al.  Euler's problem, Euler's method, and the standard map; or, the discrete charm of buckling , 1993 .

[100]  Carlo Piccardi,et al.  Chaotic behavior in an advertising diffusion model , 1995 .

[101]  S. Rice Mathematical analysis of random noise , 1944 .

[102]  L. Glass,et al.  Stable oscillations in mathematical models of biological control systems , 1978 .

[103]  T. Bountis Period doubling bifurcations and universality in conservative systems , 1981 .

[104]  Hassan Aref,et al.  Chaotic advection in a Stokes flow , 1986 .

[105]  H. McKean Nagumo's equation , 1970 .

[106]  Fotis A. Papoulias BIFURCATION ANALYSIS OF LINE OF SIGHT VEHICLE GUIDANCE USING SLIDING MODES , 1991 .

[107]  Theodore Modis,et al.  Chaoslike states can be expected before and after logistic growth , 1992 .

[108]  Harvey Kaplan,et al.  New method for calculating stable and unstable periodic orbits of one-dimensional maps , 1983 .

[109]  Sotirios Natsiavas,et al.  Dynamics of Oscillators with Strongly Nonlinear Asymmetric Damping , 1999 .

[110]  M. Hénon A two-dimensional mapping with a strange attractor , 1976 .

[111]  P. Pedersen Subharmonics in Forced Oscillations in Dissipative Systems. Part II , 1935 .

[112]  Leon Glass,et al.  Global Analysis of Nonlinear Chemical Kinetics , 1977 .

[113]  M. Sonis Once more on Hénon map: Analysis of bifurcations , 1996 .

[114]  T. Malthus Essay on the Principle of Population , 2001 .

[115]  Stephanos Theodossiades,et al.  Dynamic analysis of piecewise linear oscillators with time periodic coefficients , 2000 .

[116]  A. Fokas,et al.  Order and the ubiquitous occurrence of chaos , 1996 .

[117]  I. Percival,et al.  Non-integrable systems with algebraic singularities in complex time , 1991 .

[118]  Shin Murakami,et al.  Nonstationary Vibration of a Rotating Shaft with Nonlinear Spring Characteristics During Acceleration Through a Critical Speed : A Critical Speed of a 1/2-Order Subharmonic Oscillation , 1989 .

[119]  Robert L. Devaney,et al.  Misiurewicz Points for Complex Exponentials , 1997 .

[120]  G. Contopoulos,et al.  Invariant spectra of orbits in dynamical systems , 1994 .

[121]  K. Tomita,et al.  Thermal Fluctuation of a Self-Oscillating Reaction System Entrained by a Periodic External Force , 1979 .

[122]  Anthony N. Kounadis,et al.  Influence of Initial Conditions on the Postcritical Behavior of a Nonlinear Aeroelastic System , 1998 .

[123]  Michael S. Gaines,et al.  Biological Populations with Nonoverlapping Generations : Stable Points , Stable Cycles , and Chaos , 2007 .

[124]  M. Feigenbaum THE METRIC UNIVERSAL PROPERTIES OF PERIOD DOUBLING BIFURCATIONS AND THE SPECTRUM FOR A ROUTE TO TURBULENCE , 1980 .

[125]  G. Papaioannou,et al.  NONLINEAR TIME SERIES ANALYSIS OF THE STOCK EXCHANGE: THE CASE OF AN EMERGING MARKET , 1995 .

[126]  G. Nicolis,et al.  Pattern Formation in Reacting and Diffusing Systems , 2007 .

[127]  Gustav Feichtinger,et al.  Limit cycles in dynamic economic systems , 1992, Ann. Oper. Res..

[128]  A. Denjoy,et al.  Sur les courbes définies par les équations différentielles à la surface du tore , 1932 .

[129]  J. Ottino The Kinematics of Mixing: Stretching, Chaos, and Transport , 1989 .

[130]  L. Sirovich,et al.  Periodic solutions of the Ginzburg-Landau equation , 1986 .

[131]  Universality for period n-tuplings in complex mappings , 1983 .

[132]  M. Doherty,et al.  Chaos in deterministic systems: Strange attractors, turbulence, and applications in chemical engineering , 1988 .

[133]  Grebogi,et al.  Unstable periodic orbits and the dimension of chaotic attractors. , 1987, Physical review. A, General physics.

[134]  Stevens,et al.  Self-similar transport in incomplete chaos. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[135]  P. Holmes Bifurcation sequences in horseshoe maps: infinitely many routes to chaos , 1984 .

[136]  H. Epstein New proofs of the existence of the Feigenbaum functions , 1986 .

[137]  Christos H. Skiadas,et al.  Two generalized rational models for forecasting innovation diffusion , 1985 .

[138]  O. Rössler Chaotic Behavior in Simple Reaction Systems , 1976 .

[139]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[140]  Christos H. Skiadas Two simple models for the early and middle stage prediction of innovation diffusion , 1987, IEEE Transactions on Engineering Management.

[141]  E. Lorenz Atmospheric Predictability as Revealed by Naturally Occurring Analogues , 1969 .

[142]  P. Cvitanović,et al.  Periodic orbits as the skeleton classical and quantum chaos , 1991 .

[143]  I. Prigogine,et al.  Symmetry Breaking Instabilities in Dissipative Systems. II , 1968 .

[144]  Mark J. McGuinness,et al.  The complex Lorenz equations , 1982 .

[145]  J. Tyson Relaxation oscillations in the revised Oregonator , 1984 .

[146]  C. Nicolis,et al.  Global properties and local structure of the weather attractor over Western Europe , 1989 .

[147]  Hermann Haken,et al.  Unbiased determination of forces causing observed processes , 1992 .

[148]  Leon O. Chua,et al.  DRY TURBULENCE AND PERIOD-ADDING PHENOMENA FROM A 1-D MAP WITH TIME DELAY , 1995 .

[149]  Sophie Kowalevski,et al.  Sur le probleme de la rotation d'un corps solide autour d'un point fixe , 1889 .

[150]  P. Holmes,et al.  A nonlinear oscillator with a strange attractor , 1979, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[151]  Takashi Matsumoto,et al.  A chaotic attractor from Chua's circuit , 1984 .

[152]  Cvitanovic,et al.  Invariant measurement of strange sets in terms of cycles. , 1988, Physical review letters.

[153]  A comparative investigation of controlling chaos in a Rössler system , 2000 .

[154]  F. Hausdorff Dimension und äußeres Maß , 1918 .

[155]  G. Gunaratne,et al.  On the mode-locking universality for critical circle maps , 1990 .

[156]  R. Trippi,et al.  Chaos theory in the financial markets , 1994 .

[157]  Shigehiro Ushiki,et al.  Central difference scheme and chaos , 1982 .

[158]  Leon Glass,et al.  Bistability, period doubling bifurcations and chaos in a periodically forced oscillator , 1982 .

[159]  M. P. Païdoussis,et al.  Chaotic oscillations of the autonomous system of a constrained pipe conveying fluid , 1989 .

[160]  D. Ruelle Microscopic fluctuations and turbulence , 1979 .

[161]  William L. Ditto,et al.  Applications of chaos in biology and medicine , 2008 .

[162]  Grebogi,et al.  Roundoff-induced periodicity and the correlation dimension of chaotic attractors. , 1988, Physical review. A, General physics.

[163]  Z. Galias,et al.  Computer assisted proof of chaos in the Lorenz equations , 1998 .

[164]  D. Ruelle Differentiable dynamical systems and the problem of turbulence , 1981 .

[165]  Otto E. Rössler,et al.  Analogues to a Julia Boundary Away from Analyticity , 1987 .

[166]  M. Hénon,et al.  On the numerical computation of Poincaré maps , 1982 .

[167]  A. D. Hestenes The extrapolation, interpolation and smoothing of stationary time series with engineering applications: by Norbert Wiener. 163 pages, 15 × 24 cm. New York, John Wiley & Sons, Inc., 1949. Price, $4.00 , 1950 .

[168]  P. J. Holmes Behaviour of an oscillator with even non-linear damping , 1977 .

[169]  EXCITABLE SPIRAL WAVES IN NEMATIC LIQUID CRYSTALS , 1994 .

[170]  Arun V. Holden,et al.  On bifurcations of spiral waves in the plane , 1999 .

[171]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[172]  L. Arnold Random Dynamical Systems , 2003 .

[173]  L. Glass,et al.  Global bifurcations of a periodically forced biological oscillator , 1984 .

[174]  M. Hénon,et al.  Dynamical structure and evolution of stellar systems , 1973 .

[175]  Dimitrios S. Dendrinos,et al.  Traffic-flow dynamics: A search for chaos , 1994 .

[176]  Anastasios A. Tsonis,et al.  Nonlinear Prediction, Chaos, and Noise. , 1992 .

[177]  Ilya Prigogine Nonlinear Science and the Laws of Nature , 1997 .

[178]  Tassos Bountis,et al.  Remerging Feigenbaum trees in dynamical systems , 1984 .

[179]  M. Feigenbaum The universal metric properties of nonlinear transformations , 1979 .

[180]  Socio-Spatial Dynamics , 1990 .

[181]  E. Lorenz NOISY PERIODICITY AND REVERSE BIFURCATION * , 1980 .

[182]  G. Nicolis Natural laws and the physics of complex systems comments on the report by B. Chirikov , 1996 .

[183]  M. Kac Random Walk and the Theory of Brownian Motion , 1947 .

[184]  J. NAGUMOt,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 2006 .

[185]  Michael Faraday,et al.  XVII. On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces , 1831, Philosophical Transactions of the Royal Society of London.

[186]  Tamás Tél,et al.  Chaotic tracer scattering and fractal basin boundaries in a blinking vortex-sink system , 1997 .

[187]  Leon O. Chua,et al.  Chaos Synchronization in Chua's Circuit , 1993, J. Circuits Syst. Comput..

[188]  Peter E. Kloeden,et al.  The Numerical Solution of Nonlinear Stochastic Dynamical Systems: a Brief Introduction , 1991 .

[189]  M. Kuczma Functional equations in a single variable , 1968 .

[190]  George Contopoulos,et al.  Order and Chaos in Dynamical Astronomy , 2002 .

[191]  S. Coleman Cycles and chaos in political party voting—a research note , 1993 .

[192]  Clint Scovel,et al.  Scaling laws and the prediction of bifurcations in systems modeling pattern formation , 1988 .

[193]  B. Grammaticos,et al.  Extreme level repulsion for chaotic quantum Hamiltonians , 1989 .

[194]  A. Hodgkin,et al.  Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo , 1952, The Journal of physiology.

[195]  S. Wiggins,et al.  The bifurcation to homoclinic tori in the quasiperiodically forced Duffing oscillator , 1989 .

[196]  L. A. Belyakov,et al.  On Bifurcations of Periodic Orbits in the van der Pol-Duffing Equation , 1997 .

[197]  P. Holmes 'Strange' phenomena in dynamical systems and their physical implications , 1977 .

[198]  A. Toomre,et al.  DYNAMICS OF THE BENDING OF THE GALAXY. , 1969 .

[199]  Philip Holmes Spatial structure of time-periodic solutions of the Ginzburg-Landau equation☆ , 1986 .

[200]  N. Koumoutsos,et al.  Applied Stochastic Models and Data Analysis for Engineering Education , 1995 .

[201]  Thanasis Stengos,et al.  Some evidence concerning macroeconomic chaos , 1988 .

[202]  Julien Clinton Sprott,et al.  Extraction of dynamical equations from chaotic data , 1992 .

[203]  I. Priogine Time, chaos and the laws of nature , 1996 .

[204]  M. Feigenbaum Universal behavior in nonlinear systems , 1983 .

[205]  J. S. Nicolis,et al.  Non-Uniform Chaotic Dynamics with Implications to Information Processing , 1983 .

[206]  J. Eckmann,et al.  Iterated maps on the interval as dynamical systems , 1980 .

[207]  P. Aston A chaotic Hopf bifurcation in coupled maps , 1998 .

[208]  Mitchell J. Feigenbaum,et al.  The transition to aperiodic behavior in turbulent systems , 1980 .

[209]  Julien Clinton Sprott,et al.  Predicting the dimension of strange attractors , 1994 .

[210]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[211]  上田 〔ヨシ〕亮,et al.  Randomly Transitional Phenomena in the System Governed by Duffing′s Equation (乱流発生の機構に関する研究会報告) , 1978 .

[212]  J. A. Sellwood,et al.  Dynamics of Barred Galaxies , 1993 .

[213]  Alain Arneodo,et al.  Possible new strange attractors with spiral structure , 1981 .

[214]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[215]  Vasileios Basios,et al.  Controlling the onset of homoclinic chaos due to parametric noise , 1999 .

[216]  Tomasz Kapitaniak,et al.  Soliton chaos models for mechanical and biological elastic chains , 1990 .

[217]  F. R. Marotto,et al.  Chaotic behavior in the Hénon mapping , 1979 .

[218]  Catherine Nicolis,et al.  Recurrence time statistics in chaotic dynamics. I. Discrete time maps , 1997 .

[219]  John L. Hudson,et al.  Self-similarity in hyperchaotic data , 1990 .

[220]  Werner Lauterborn,et al.  Numerical investigation of nonlinear oscillations of gas bubbles in liquids , 1976 .

[221]  Chaos as a Limit in a Boundary Value Problem , 1984 .

[222]  Massimo Campanino,et al.  On Feigenbaum's functional equation g ∘ g(λx) + λg(x) = 0 , 1982 .

[223]  G. Zaslavsky,et al.  Near threshold anomalous transport in the standard map. , 1997, Chaos.

[224]  de Oliveira CR,et al.  Bifurcations in a class of time-delay equations. , 1987, Physical review. A, General physics.

[225]  Murray Z. Frank,et al.  CHAOTIC DYNAMICS IN ECONOMIC TIME‐SERIES , 1988 .

[226]  L Glass,et al.  Complex Bifurcations and Chaos in Simple Theoretical Models of Cardiac Oscillations a , 1990, Annals of the New York Academy of Sciences.

[227]  Note on the Schwarzian derivative , 1996 .

[228]  Christos H. Skiadas,et al.  A stochastic Bass innovation diffusion model for studying the growth of electricity consumption in Greece , 1997 .

[229]  Anastasios Malliaris,et al.  Methodological issues in asset pricing: Random walk or chaotic dynamics , 1999 .

[230]  F. Verhulst Nonlinear Differential Equations and Dynamical Systems , 1989 .

[231]  Leo P. Kadanoff,et al.  Scaling for a Critical Kolmogorov-Arnold-Moser Trajectory , 1981 .

[232]  Ira B. Schwartz,et al.  Instant chaos and hysteresis in coupled linear-nonlinear oscillators , 1998 .

[233]  Leon O. Chua,et al.  A zoo of strange attractors from the canonical Chua's circuits , 1992, [1992] Proceedings of the 35th Midwest Symposium on Circuits and Systems.

[234]  J. Ottino Mixing, chaotic advection, and turbulence , 1990 .

[235]  P. Fatou,et al.  Sur l'itération des fonctions transcendantes Entières , 1926 .

[236]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[237]  G. P. King,et al.  Eulerian diagnostics for Lagrangian chaos in three-dimensional Navier-Stokes flows , 1998 .

[238]  Robert M. May,et al.  Period doubling and the onset of turbulence: An analytic estimate of the Feigenbaum ratio , 1980 .

[239]  Gustav Feichtinger,et al.  Hopf bifurcation in an advertising diffusion model , 1992 .

[240]  P. Gaspard,et al.  Investigation of the Lorentz gas in terms of periodic orbits. , 1992, Chaos.

[241]  Hidekazu Ito Non-integrability of Hénon-Heiles system and a theorem of Ziglin , 1985 .

[242]  David A. Rand,et al.  The bifurcations of duffing's equation: An application of catastrophe theory , 1976 .

[244]  Balth. van der Pol,et al.  VII. Forced oscillations in a circuit with non-linear resistance. (Reception with reactive triode) , 1927 .

[245]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[246]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[247]  Alain Arneodo,et al.  Transition to stochasticity for a class of forced oscillators , 1979 .

[248]  Raymond A. Adomaitis,et al.  RESONANCE PHENOMENA IN AN ADAPTIVELY-CONTROLLED SYSTEM , 1991 .

[249]  Cristian S. Calude The mathematical theory of information , 2007 .

[250]  John William Strutt,et al.  Scientific Papers: On the Crispations of Fluid resting upon a Vibrating Support , 2009 .

[251]  S. E. Williams Galaxies & the universe. , 1971 .

[252]  A. N. Sharkovskiĭ COEXISTENCE OF CYCLES OF A CONTINUOUS MAP OF THE LINE INTO ITSELF , 1995 .

[253]  Apostolos Serletis,et al.  Is there chaos in economic time series , 1996 .

[254]  N. Kopell,et al.  Horizontal Bands in the Belousov Reaction , 1973, Science.

[255]  E. Batschelet Über die numerische Auflösung von Randwertproblemen bei elliptischen partiellen Differentialgleichungen , 1952 .

[256]  V. Biktashev Evolution of twist of an autowave vortex , 1989 .

[257]  T. Bountis,et al.  On the Convergence of Series Solutions of Nonintegrable Systems with Algebraic Singularities , 1992 .

[258]  H. Haken,et al.  The influence of noise on the logistic model , 1981 .

[259]  George D. Birkhoff,et al.  On the periodic motions of dynamical systems , 1927, Hamiltonian Dynamical Systems.

[260]  Y. Kuznetsov,et al.  BIFURCATIONS AND CHAOS IN A PERIODIC PREDATOR-PREY MODEL , 1992 .

[261]  John Guckenheimer,et al.  THE BIFURCATION OF QUADRATIC FUNCTIONS * , 1979 .

[262]  G. Nicolis,et al.  Finite time behavior of small errors in deterministic chaos and Lyapunov exponents , 1993 .

[263]  Constantin Carathéodory,et al.  Calculus of variations and partial differential equations of the first order , 1965 .

[264]  N. Wiener Generalized harmonic analysis , 1930 .

[265]  G. Vattay,et al.  Beyond the periodic orbit theory , 1997, chao-dyn/9712002.

[266]  M. Markus,et al.  Observation of Chemical Turbulence in the Belousov-Zhabotinsky Reaction , 1994 .

[267]  K. Ikeda,et al.  High-dimensional chaotic behavior in systems with time-delayed feedback , 1987 .

[268]  E. Ott Strange attractors and chaotic motions of dynamical systems , 1981 .

[269]  D. Ruelle,et al.  Resonances of chaotic dynamical systems. , 1986, Physical review letters.

[270]  L. Glass,et al.  Structure and dynamics of neural network oscillators , 1979, Brain Research.

[271]  Stochastic Differential Equations as Dynamical Systems , 1990 .

[272]  L. Glass,et al.  STEADY STATES, LIMIT CYCLES, AND CHAOS IN MODELS OF COMPLEX BIOLOGICAL NETWORKS , 1991 .

[273]  F. K. Diakonos,et al.  A stochastic approach to the construction of one-dimensional chaotic maps with prescribed statistical properties , 1999, chao-dyn/9910020.

[274]  Konstantinos Karamanos,et al.  Symbolic Dynamics and Entropy Analysis of Feigenbaum Limit Sets , 1999 .

[275]  Otto E. Rössler,et al.  Chemical Turbulence: Chaos in a Simple Reaction-Diffusion System , 1976 .

[276]  Kazimierz Z. Poznański,et al.  International diffusion of steel technologies: Time-lag and the speed of diffusion , 1983 .

[277]  Carroll,et al.  Driving systems with chaotic signals. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[278]  W. Tucker The Lorenz attractor exists , 1999 .

[279]  J. Gallas,et al.  Structure of the parameter space of the Hénon map. , 1993, Physical review letters.

[280]  Christian Mira,et al.  On Some Properties of Invariant Sets of Two-Dimensional Noninvertible Maps , 1997 .

[281]  John Guckenheimer,et al.  Dynamics of the Van der Pol equation , 1980 .

[282]  K. Ikeda,et al.  Successive Higher-Harmonic Bifurcations in Systems with Delayed Feedback , 1982 .

[283]  Philip J. Aston,et al.  Bifurcations of the horizontally forced spherical pendulum , 1999 .

[284]  The transition phase of the deviation vector of nearby orbits , 2001 .

[285]  Konstantine P. Georgakakos,et al.  Estimating the Dimension of Weather and Climate Attractors: Important Issues about the Procedure and Interpretation , 1993 .

[286]  V. Mahajan,et al.  Generalized model for the time pattern of the diffusion process , 1977, IEEE Transactions on Engineering Management.

[287]  Ioannis T. Georgiou,et al.  On the Global Geometric Structure of the Dynamics of the Elastic Pendulum , 1999 .

[288]  H. Degn,et al.  Effect of Bromine Derivatives of Malonic Acid on the Oscillating Reaction of Malonic Acid, Cerium Ions and Bromate , 1967, Nature.

[289]  Y. Ueda EXPLOSION OF STRANGE ATTRACTORS EXHIBITED BY DUFFING'S EQUATION , 1979 .

[290]  G. Nicolis,et al.  Is there a climatic attractor? , 1984, Nature.

[291]  Vance L. Martin,et al.  Chaos and non-linear models in economics : theory and applications , 1994 .

[292]  Anastasios A. Tsonis,et al.  Dynamical systems as models for physical processes , 1995, Complex..

[293]  Ian Stewart,et al.  SPIRALS IN SCALAR REACTION–DIFFUSION EQUATIONS , 1995 .

[294]  S. Ulam,et al.  Studies of nonlinear problems i , 1955 .

[295]  R. Pearl,et al.  On the Rate of Growth of the Population of the United States since 1790 and Its Mathematical Representation. , 1920, Proceedings of the National Academy of Sciences of the United States of America.

[296]  T. Czárán,et al.  Metabolic network dynamics in open chaotic flow. , 2002, Chaos.

[297]  R. Helleman Feigenbaum Sequences in Conservative and Dissipative Systems , 1981 .

[298]  A. Rényi On the dimension and entropy of probability distributions , 1959 .

[299]  Peter Hunter,et al.  There is a theory of heart , 1990 .

[300]  T. Ozaki THE STATISTICAL ANALYSIS OF PERTURBED LIMIT CYCLE PROCESSES USING NONLINEAR TIME SERIES MODELS , 1982 .

[301]  B. LeBaron,et al.  Simple Technical Trading Rules and the Stochastic Properties of Stock Returns , 1992 .

[302]  Peter Schmelcher,et al.  Detecting Unstable Periodic Orbits of Chaotic Dynamical Systems , 1997 .

[303]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[304]  Alfred J. Lotka Zur Theorie der periodischen Reaktionen , 1910 .

[305]  M. N. Vrahatis,et al.  2D universality of period-doubling bifurcations in 3D conservative reversible mappings , 1994 .

[306]  Thanasis Stengos,et al.  The stability of Canadian macroeconomic data as measured by the largest Lyapunov exponent , 1988 .

[307]  Sadri Hassani,et al.  Nonlinear Dynamics and Chaos , 2000 .

[308]  C. E. Leith,et al.  Stochastic models of chaotic systems , 1995 .

[309]  Alexander F. Vakakis,et al.  Complex dynamics of perfect discrete systems under partial follower forces , 2002 .

[310]  G. H. Markstein Experimental and Theoretical Studies of Flame-Front Stability* , 1988 .

[311]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[312]  Guanrong Chen,et al.  On a Generalized Lorenz Canonical Form of Chaotic Systems , 2002, Int. J. Bifurc. Chaos.

[313]  Chaos in a four-variable piecewise-linear system of differential equations , 1988 .

[314]  Athanasios Gavrielides,et al.  Using neural networks for controlling chaos , 1994, Optics & Photonics.

[315]  Charles R. Doering,et al.  On the shape and dimension of the Lorenz attractor , 1995 .

[316]  Pierre Collet,et al.  Period doubling bifurcations for families of maps on ℝn , 1981 .

[317]  Louis M. Pecora Chaos in Communications , 1993 .

[318]  B. Chirikov Natural laws and human prediction , 1996 .

[319]  S. Smale Lecture III Dynamical systems and turbulence , 1977 .

[320]  P. Kloeden,et al.  Stable attracting sets in dynamical systems and in their one-step discretizations , 1986 .

[321]  Michał Misiurewicz,et al.  Existence of a homoclinic point for the Hénon map , 1980 .

[322]  P. Grassberger Generalized dimensions of strange attractors , 1983 .

[323]  Simple Mathematical Models for Complex Dynamics in Physiological Systems , 1988 .

[324]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[325]  J. Ritt,et al.  Permutable rational functions , 1923 .

[326]  S. Coleman Dynamics in the fragmentation of political party systems , 1995 .

[327]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[328]  I. Epstein Oscillations and chaos in chemical systems , 1983 .

[329]  Lisa Borland,et al.  Simultaneous modeling of nonlinear deterministic and stochastic dynamics , 1996 .

[330]  A. Winfree,et al.  Scroll-Shaped Waves of Chemical Activity in Three Dimensions , 1973, Science.

[331]  P. J. Holmes,et al.  Second order averaging and bifurcations to subharmonics in duffing's equation , 1981 .

[333]  O. Rössler The Chaotic Hierarchy , 1983 .

[334]  Paul Manneville,et al.  Different ways to turbulence in dissipative dynamical systems , 1980 .

[335]  W. Ditto,et al.  Chaos: From Theory to Applications , 1992 .

[336]  G. Zaslavsky The simplest case of a strange attractor , 1978 .

[337]  K. Ikeda,et al.  Instability Leading to Periodic and Chaotic Self-Pulsations in a Bistable Optical Cavity , 1982 .

[338]  Françoise Argoul,et al.  Homoclinic chaos in chemical systems , 1993 .

[339]  K. Tomita,et al.  Possibility of chaotic behaviour and multi-basins in forced glycolytic oscillations , 1980 .

[340]  Louis M. Pecora,et al.  Using multiple attractor chaotic systems for communication. , 1999 .

[341]  Persistence of the Feigenbaum Attractor in One-Parameter Families , 1999 .

[342]  C. Kahlert,et al.  The Separating Mechanisms in Poincaré Halfmaps , 1986 .

[343]  H. Haken,et al.  Chapman-Kolmogorov equation and path integrals for discrete chaos in presence of noise , 1981 .

[344]  M. Coleman,et al.  An Uncontrolled Walking Toy That Cannot Stand Still , 1998 .

[345]  H. Poincaré,et al.  Sur les courbes définies par les équations différentielles(III) , 1885 .

[346]  Ikeda,et al.  Quantum-classical correspondence in many-dimensional quantum chaos. , 1988, Physical review letters.

[347]  S. Katsura,et al.  Exactly solvable models showing chaotic behavior II , 1985 .

[348]  Does Chaos Permeate the Solar System?: As faster computers allow celestial mechanicians longer looks at the behavior of the planets, chaos is turning up everywhere. , 1989, Science.

[349]  I. Good,et al.  Fractals: Form, Chance and Dimension , 1978 .

[350]  G. Contopoulos Do successive bifurcations in Hamiltonian systems have the same universal ratio? , 1981 .

[351]  P. Verhulst Recherches mathématiques sur la loi d’accroissement de la population , 2022, Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Bruxelles.

[352]  B. Mandelbrot The Variation of Some Other Speculative Prices , 1967 .

[353]  C. M. Place,et al.  An Introduction to Dynamical Systems , 1990 .

[354]  P. Holmes,et al.  Structurally stable heteroclinic cycles , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.

[355]  H. Aref INTEGRABLE, CHAOTIC, AND TURBULENT VORTEX MOTION IN TWO-DIMENSIONAL FLOWS , 1983 .

[356]  Confinors and Bounded-Time Patterns in Chua's Circuit and the Double Scroll Family , 1991 .

[357]  C. Kahlert,et al.  Winfree Meandering in a 2-Dimensional 2-Variable Excitable Medium , 1979 .

[358]  Shin Murakami,et al.  Dynamic Response and Stability of a Rotating Asymmetric Shaft Mounted on a Flexible Base , 1999 .

[359]  R. A. James,et al.  A dynamical instability of bars in disk galaxies , 1991, Nature.

[360]  Tassos Bountis,et al.  Determinism and noise in surface temperature time series , 1993 .

[361]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[362]  J. Roux,et al.  Experimental studies of bifurcations leading to chaos in the Belousof-Zhabotinsky reaction , 1983 .

[363]  Jerry A. Sellwood,et al.  Quiet starts for galaxy simulations , 1983 .

[364]  Peter Grassberger,et al.  On the fractal dimension of the Henon attractor , 1983 .

[365]  Arthur T. Winfree,et al.  Rotating Chemical Reactions , 1974 .

[366]  H. Busse Spatial periodic homogeneous chemical reaction , 1969 .

[367]  P. Cvitanović Universality in Chaos , 1989 .

[368]  R. F. Williams,et al.  The qualitative analysis of a difference equation of population growth , 1976, Journal of mathematical biology.

[369]  Enrique Tirapegui,et al.  Lorenz Bifurcation: Instabilities in Quasireversible Systems , 1999 .

[370]  Peter Grassberger Information flow and maximum entropy measures for 1-D maps , 1985 .

[371]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[372]  B. Mandelbrot Intermittent turbulence in self-similar cascades : divergence of high moments and dimension of the carrier , 2004 .

[373]  N. Flytzanis,et al.  Analysis of Eeg Signals and Their Spatial Correlation Over the Scalp Surface , 1991 .

[374]  Russian Federation,et al.  On bifurcations of the Lorenz attractor in the Shimizu-Morioka model , 1993 .

[375]  James A. Yorke,et al.  Lorenz-like chaos in a partial differential equation for a heated fluid loop , 1987 .

[376]  Pierre Collet,et al.  Positive Liapunov exponents and absolute continuity for maps of the interval , 1983, Ergodic Theory and Dynamical Systems.

[377]  Tassos Bountis,et al.  On the stability of periodic orbits of two-dimensional mappings , 1981 .

[378]  Martin Casdagli,et al.  Nonlinear prediction of chaotic time series , 1989 .

[379]  T. Modis,et al.  Genetic re-engineering of corporations , 1997 .

[380]  P. Holmes Periodic, nonperiodic and irregular motions in a Hamiltonian system , 1980 .

[381]  A. Goetz Perturbations of 8-Attractors and Births of Satellite Systems , 1998 .

[382]  Ito,et al.  Spiral breakup in a new model of discrete excitable media. , 1991, Physical review letters.

[383]  J. Eckmann,et al.  A note on the power spectrum of the iterates of Feigenbaum's function , 1981 .

[384]  H. Davis Introduction to Nonlinear Differential and Integral Equations , 1964 .

[385]  Yoshisuke Ueda Random Phenomena Resulting from Nonlinearity , 1978 .

[386]  Hidetsugu Sakaguchi,et al.  Bifurcations of the Coupled Logistic Map , 1987 .

[387]  Catherine Nicolis,et al.  Extreme value distributions in chaotic dynamics , 1995 .

[388]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[389]  Michael M. Bernitsas,et al.  Autonomous oscillations, bifurcations, and chaotic response of moored vessels , 1988 .

[390]  Tassos Bountis,et al.  Stability of nonlinear modes and chaotic properties of 1D Fermi-Pasta-Ulam lattices , 1983 .

[391]  Hiroaki Daido STRANGE WAVES IN COUPLED-OSCILLATOR ARRAYS: MAPPING APPROACH , 1997 .

[392]  Michael M. Bernitsas,et al.  Dynamics of Two-Line Ship Towing/Mooring Systems: Bifurcations, Singularities of Stability Boundaries, Chaos , 1992 .

[393]  Epaminondas Panas,et al.  Are oil markets chaotic? A non-linear dynamic analysis , 2000 .

[394]  D. Ruelle Chaotic evolution and strange attractors : the statistical analysis of time series for deterministic nonlinear systems , 1989 .

[395]  A. Kolmogorov,et al.  Preservation of conditionally periodic movements with small change in the Hamilton function , 1979 .

[396]  Mitchell J. Feigenbaum Some characterizations of strange sets , 1987 .

[397]  J. Yorke,et al.  The liapunov dimension of strange attractors , 1983 .

[398]  J. C. Burkill,et al.  Ordinary Differential Equations , 1964 .

[399]  Chieko Murakami,et al.  Sequence of global period doubling bifurcation in the Hénon maps , 2002 .

[400]  F. A. Hopf BIFURCATIONS TO CHAOS IN OPTICAL BISTABILITY , 1983 .

[401]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[402]  I. Prigogine,et al.  Symmetry Breaking Instabilities in Biological Systems , 1969, Nature.

[403]  Classical economic growth theory: a global bifurcation analysis , 1996 .

[404]  R. May Chaos and the dynamics of biological populations , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[405]  G. Nicolis,et al.  CLOSING THE HIERARCHY OF MOMENT EQUATIONS IN NONLINEAR DYNAMICAL SYSTEMS , 1998 .

[406]  James P. Crutchfield,et al.  Fluctuations and the onset of chaos , 1980 .

[407]  Vito Volterra,et al.  Theory of Functionals and of Integral and Integro-Differential Equations , 2005 .

[408]  J. R. Wallis,et al.  Computer Experiments with Fractional Gaussian Noises: Part 2, Rescaled Ranges and Spectra , 1969 .

[409]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion , 1930 .

[410]  R. Fisher THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES , 1937 .

[411]  Polina S. Landa,et al.  Stochastic and Chaotic Oscillations , 1992 .

[412]  P. Holmes Proof of non-integrability for the Hénon-Heiles Hamiltonian near an exceptional integrable case , 1982 .

[413]  Hermann Haken,et al.  Learning the dynamics of two-dimensional stochastic Markov processes , 1992 .

[414]  Phatak,et al.  Logistic map: A possible random-number generator. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[415]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[416]  Christos H. Skiadas A Lagrangian Approach for the Selection of Growth Functions in Forecasting , 1995 .

[417]  R. Liouville,et al.  Sur les équations de la dynamique , 1895 .

[418]  Macroscopic behavior in a simple chaotic Hamiltonian system , 1983 .

[419]  S. P. Hastings,et al.  A computer proof that the Lorenz equations have “chaotic” solutions , 1994 .

[420]  Clifford A. Pickover,et al.  Does God Play Dice? (The Mathematics of Chaos) by Ian Stewart (review) , 2017 .

[421]  H. Poincaré,et al.  Les méthodes nouvelles de la mécanique céleste , 1899 .

[422]  T. Bountis Chaotic dynamics : theory and practice , 1992 .

[423]  Nancy Kopell,et al.  Plane Wave Solutions to Reaction‐Diffusion Equations , 1973 .

[424]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[425]  W. Kutta Beitrag zur Naherungsweisen Integration Totaler Differentialgleichungen , 1901 .

[426]  K. Ikeda Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system , 1979 .

[427]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[428]  Andrew D. Dimarogonas,et al.  Vibration of cracked structures: A state of the art review , 1996 .

[429]  L. Chua Dynamic nonlinear networks: State-of-the-art , 1980 .

[430]  D. Lynden-Bell,et al.  Galactic Nuclei as Collapsed Old Quasars , 1969, Nature.

[431]  M. Wolf,et al.  Chaos - The Interplay Between Stochastic and Deterministic Behaviour: Proceedings of the XXXIst Winter School of Theoretical Physics Held in Karpacz, ... February 1995 , 2013 .

[432]  H. Haken Synergetics: an Introduction, Nonequilibrium Phase Transitions and Self-organization in Physics, Chemistry, and Biology , 1977 .

[433]  E. Lorenz Dimension of weather and climate attractors , 1991, Nature.

[434]  M. Hénon,et al.  Chaotic scattering modelled by an inclined billiard , 1988 .

[435]  Francesco Calogero,et al.  Solution of the One‐Dimensional N‐Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials , 1971 .

[436]  Ramani,et al.  Do integrable mappings have the Painlevé property? , 1991, Physical review letters.

[437]  Anastasios Bezerianos,et al.  A Probabilistic Symmetric Encryption Scheme for Very Fast Secure Communication Based on Chaotic Systems of difference equations , 2001, Int. J. Bifurc. Chaos.

[438]  Robert C. Hilborn,et al.  Chaos And Nonlinear Dynamics: An Introduction for Scientists and Engineers , 1994 .

[439]  A. Fowler,et al.  Hysteresis in the Lorenz equations , 1982 .

[440]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[441]  S. Pavlou,et al.  Chaotic dynamics of a microbial system of coupled food chains , 2001 .

[442]  Michael N. Vrahatis,et al.  PERIODIC ORBITS AND INVARIANT SURFACES OF 4D NONLINEAR MAPPINGS , 1996 .

[443]  S. Utida,et al.  Population Fluctuation, an Experimental and Theoretical Approach , 1957 .

[444]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[445]  Analytical condition for chaotic behaviour of the duffing oscillator , 1990 .

[446]  M. Kaufman,et al.  NUMERICAL STUDY OF TRAVELLING WAVES IN A REACTION-DIFFUSION SYSTEM: RESPONSE TO A SPATIOTEMPORAL FORCING , 1992 .

[447]  M. Casdagli Chaos and Deterministic Versus Stochastic Non‐Linear Modelling , 1992 .

[448]  Alvin Shrier,et al.  Chaos in neurobiology , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[449]  G. Contopoulos Periodic and "tube" orbits , 1965 .

[450]  J. Elsner,et al.  Chaos, Strange Attractors, and Weather. , 1989 .

[451]  Patterns of bifurcation in iterated function systems , 1996 .

[452]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[453]  Catherine Nicolis,et al.  Recurrence time statistics in deterministic and stochastic dynamical systems in continuous time: a comparison , 2000 .

[454]  Rotation numbers of periodic orbits in the Hénon map , 1988 .

[455]  D. Coles Transition in circular Couette flow , 1965, Journal of Fluid Mechanics.

[456]  John Guckenheimer,et al.  A Strange, Strange Attractor , 1976 .

[457]  Yoshisuke Ueda Strange Attractors and the Origin of Chaos , 2000 .

[458]  Julio M. Ottino,et al.  Stretching and breakup of droplets in chaotic flows , 1991, Journal of Fluid Mechanics.

[459]  Mitchell J. Feigenbaum,et al.  The onset spectrum of turbulence , 1979 .

[460]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[461]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[462]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[463]  R. Devaney,et al.  Chaotic Bursts in Nonlinear Dynamical Systems , 1987, Science.

[464]  Jean-Paul Bézivin,et al.  Sur les équations fonctionelles $p$-adiques aux $q$-différences , 1992 .

[465]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[466]  On linearisable noisy systems , 1998 .

[467]  J. Eckmann,et al.  ON THE ABUNDANCE OF CHAOTIC BEHAVIOR IN ONE DIMENSION * , 1980 .

[468]  Anastasios A. Tsonis,et al.  Nonlinear Processes in Geophysics c○European Geophysical Society 2001 , 1999 .

[469]  James A. Yorke,et al.  Collapsing of chaos in one dimensional maps , 2000 .

[470]  Grebogi,et al.  Controlling chaos in high dimensional systems. , 1992, Physical review letters.

[471]  J. Yorke,et al.  Basins of Attraction , 1996, Science.

[472]  Peter Grassberger,et al.  Some more universal scaling laws for critical mappings , 1981 .

[473]  P. Phillipson,et al.  Map Dynamics Study of the Lorenz Equations , 1997 .

[474]  Moses A. Boudourides,et al.  Piecewise linear interval maps both expanding and contracting , 2000 .

[475]  Andrey Shilnikov,et al.  ON THE NONSYMMETRICAL LORENZ MODEL , 1991 .

[476]  A renormalization group with periodic behaviour , 1979 .

[477]  J. Doob,et al.  The Brownian Movement and Stochastic Equations , 1942 .

[478]  Y. Pomeau,et al.  Intermittent transition to turbulence in dissipative dynamical systems , 1980 .

[479]  Self-Similar Basin Boundary in a Continuous System , 1990 .

[480]  David A. Rand,et al.  Bifurcations of the forced van der Pol oscillator , 1978 .

[481]  A. Goriely From Weak to Full Painlevé Property via time Singularities Transformations , 1992 .

[482]  J. Curry On computing the entropy of the Henon attractor , 1981 .

[483]  Robert L. Devaney,et al.  The exploding exponential and other chaotic bursts in complex dynamics , 1991 .

[484]  John Guckenheimer,et al.  Symbolic dynamics and relaxation oscillations , 1980 .

[485]  G. Duffing,et al.  Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung , 1918 .

[486]  P. Meakin,et al.  A new model for biological pattern formation. , 1986, Journal of theoretical biology.

[487]  Michael Dellnitz,et al.  Cycling chaos , 1995 .

[488]  Patrick Celka,et al.  Delay-differential equation versus 1D-map: application to chaos control , 1997 .

[489]  John L. Hudson,et al.  Chaotic forcing generates a wrinkled boundary , 1989 .

[490]  F. J. Rubia,et al.  ANALYSIS OF THE BEHAVIOR OF A RANDOM NONLINEAR DELAY DISCRETE EQUATION , 1996 .

[491]  Peter Schmelcher,et al.  SYSTEMATIC COMPUTATION OF THE LEAST UNSTABLE PERIODIC ORBITS IN CHAOTIC ATTRACTORS , 1998 .

[492]  Jacob Palis Chaotic and complex systems , 2002 .

[493]  H. Fang Studying the Lorenz equations with one-dimensional maps from successive local maxima inz , 1995 .

[494]  Christos H. Skiadas,et al.  Exploring and Simulating Chaotic Advection:A Difference Equations Approach , 2006, nlin/0611036.

[495]  J. Guckenheimer Sensitive dependence to initial conditions for one dimensional maps , 1979 .

[496]  Jean-Pierre Eckmann,et al.  A complete proof of the Feigenbaum conjectures , 1987 .

[497]  D. Ruelle Locating resonances for AxiomA dynamical systems , 1986 .

[498]  Anastasios A. Tsonis,et al.  The Impact of nonlinear Dynamics in the Atmospheric Sciences , 2001, Int. J. Bifurc. Chaos.

[499]  L. P. Šil'nikov ON A POINCARÉ-BIRKHOFF PROBLEM , 1967 .

[500]  Y. Pomeau,et al.  Two strange attractors with a simple structure , 1976 .

[501]  J. Yorke,et al.  CHAOTIC ATTRACTORS IN CRISIS , 1982 .

[502]  Robert M. May,et al.  Limit Cycles in Predator-Prey Communities , 1972, Science.

[503]  James A. Yorke,et al.  THE ONSET OF CHAOS IN A FLUID FLOW MODEL OF LORENZ * , 1979 .

[504]  P. L. Rijke Notiz über eine neue Art, die in einer an beiden Enden offenen Röhre enthaltene Luft in Schwingungen zu versetzen , 1859 .

[505]  J. E. Littlewood,et al.  On Non‐Linear Differential Equations of the Second Order: I. the Equation y¨ − k(1‐y2)y˙ + y = bλk cos(λl + α), k Large , 1945 .

[506]  F. Vivaldi,et al.  Integrable Hamiltonian Systems and the Painleve Property , 1982 .

[507]  D. Ruelle SENSITIVE DEPENDENCE ON INITIAL CONDITION AND TURBULENT BEHAVIOR OF DYNAMICAL SYSTEMS , 1979 .

[508]  Leon Glass,et al.  Cardiac arrhythmias and circle maps-A classical problem. , 1991, Chaos.

[509]  Marios M. Polycarpou,et al.  High-order neural network structures for identification of dynamical systems , 1995, IEEE Trans. Neural Networks.

[510]  John Argyris,et al.  Chaotic vibrations of a nonlinear viscoelastic beam , 1996 .

[511]  Different Kinds of Chaotic Oscillations in the Belousov-Zhabotinskii Reaction , 1978 .

[512]  A. Winfree Spiral Waves of Chemical Activity , 1972, Science.

[513]  Yoshisuke Ueda,et al.  Bifurcations in a system described by a nonlinear differential equation with delay. , 1994, Chaos.

[514]  D. Ruelle Diagnosis of dynamical systems with fluctuating parameters , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[515]  Henri Poincaré,et al.  Science et méthode , 1934 .

[516]  Nicholas C. Metropolis,et al.  On Finite Limit Sets for Transformations on the Unit Interval , 1973, J. Comb. Theory A.

[517]  Celso Grebogi,et al.  Theory of first order phase transitions for chaotic attractors of nonlinear dynamical systems , 1989 .

[518]  Stephen Smale The Mathematics of Time: Essays on Dynamical Systems, Economic Processes, and Related Topics , 1980 .

[519]  T. Kilias GENERATION OF PSEUDO-CHAOTIC SEQUENCES , 1994 .

[520]  M. Sharif,et al.  A generalized model for forecasting technological substitution , 1976 .

[521]  Paul Manneville,et al.  Intermittency, self-similarity and 1/f spectrum in dissipative dynamical systems , 1980 .

[522]  James A. Yorke,et al.  Rigorous verification of trajectories for the computer simulation of dynamical systems , 1991 .

[523]  Leo P. Kadanoff,et al.  From order to chaos II : essays : critical, chaotic and otherwise , 1993 .

[524]  Harry L. Swinney,et al.  The transition to turbulence , 1978 .

[525]  F. Combes,et al.  Box and peanut shapes generated by stellar bars , 1990 .

[526]  H. Swinney,et al.  Hydrodynamic instabilities and the transition to turbulence , 1978 .

[527]  Ottino,et al.  Diffusion and reaction in a lamellar system: Self-similarity with finite rates of reaction. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[528]  S. Natsiavas,et al.  Dynamics of Nonlinear Oscillators under Simultaneous Internal and External Resonances , 1998 .

[529]  G. Lewicki,et al.  Approximation by Superpositions of a Sigmoidal Function , 2003 .

[530]  Ilya Prigogine Why irreversibility? The formulation of classical and quantum mechanics for nonintegrable systems , 1995 .

[531]  Anastasios Bezerianos,et al.  REPRESENTATION OF SINO-ATRIAL NODE DYNAMICS BY CIRCLE MAPS , 1996 .

[532]  O. Rössler An equation for continuous chaos , 1976 .

[533]  Sophie Kowalevski Sur une propriété du système d'équations différentielles qui définit la rotation d'un corps solide autour d'un point fixe , 1890 .

[534]  H. Swinney,et al.  Onset of Turbulence in a Rotating Fluid , 1975 .

[535]  Frank C. Hoppensteadt,et al.  Analysis and simulation of chaotic systems , 1992 .

[536]  R. Lozi,et al.  Organized confinors and anti-confinors and their bifurcations in constrained “Lorenz system ” , 1988 .

[537]  Julien Clinton Sprott,et al.  Simplest dissipative chaotic flow , 1997 .

[538]  E. Hopf A mathematical example displaying features of turbulence , 1948 .

[539]  Richard H. Day,et al.  Complex economic dynamics , 1994 .

[540]  F. Takens,et al.  On the nature of turbulence , 1971 .

[541]  M. Hénon Numerical study of quadratic area-preserving mappings , 1969 .

[542]  A NEW PHYSICAL EFFECT MODELED BY AN IKEDA MAP DEPENDING ON A MONOTONICALLY TIME-VARYING PARAMETER , 1999 .

[543]  J. Wisdom Chaotic Dynamics in the Solar System , 1987 .

[544]  T. Bountis,et al.  On the singularity analysis of intersecting separatrices in near-integrable dynamical systems , 1987 .

[545]  KAITAI LI,et al.  Global bifurcation and Long Time Behavior of the Volterra-Lotka Ecological Model , 2001, Int. J. Bifurc. Chaos.

[546]  P. Grassberger Toward a quantitative theory of self-generated complexity , 1986 .

[547]  J. Hadamard,et al.  Les surfaces a courbures opposees et leurs lignes geodesique , 1898 .

[548]  Michael C. Mackey,et al.  Chaos, Fractals, and Noise , 1994 .

[549]  O. Lanford Functional equations for circle homeomorphisms with golden ratio rotation number , 1984 .

[550]  Christos H. Skiadas,et al.  Analytic solution and estimation of parameters on a stochastic exponential model for a technological diffusion process , 1995 .

[551]  A. Toomre,et al.  On the gravitational stability of a disk of stars , 1964 .

[552]  M. Hénon,et al.  Satellite encounters. [In circular orbits] , 1986 .

[553]  A. Boyarsky A functional equation for a segment of the He´non map unstable manifold , 1986 .

[554]  A. Toomre,et al.  On the Distribution of Matter Within Highly Flattened Galaxies. , 1963 .

[555]  E. Lorenz The problem of deducing the climate from the governing equations , 1964 .

[556]  I. Kevrekidis,et al.  Some common dynamic features of coupled reacting systems , 1991 .

[557]  William A. Brock,et al.  Differential Equations, Stability and Chaos in Dynamic Economics , 1989 .

[558]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[559]  Jan Awrejcewicz Bifurcation and Chaos in Simple Dynamical Systems , 1989 .

[560]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[561]  Frank M. Bass,et al.  A New Product Growth for Model Consumer Durables , 2004, Manag. Sci..

[562]  Benoit B. Mandelbrot,et al.  Negative fractal dimensions and multifractals , 1990 .

[563]  A. Liapounoff,et al.  Problème général de la stabilité du mouvement , 1907 .

[564]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion II , 1945 .

[565]  C. Skiadas Innovation diffusion models expressing asymmetry and/or positively or negatively influencing forces , 1986 .

[566]  Rutherford Aris,et al.  Numerical computation of invariant circles of maps , 1985 .

[567]  P. Peebles,et al.  A Numerical Study of the Stability of Flattened Galaxies: or, can Cold Galaxies Survive? , 1973 .

[568]  A. Lapedes,et al.  Global bifurcations in Rayleigh-Be´nard convection: experiments, empirical maps and numerical bifurcation analysis , 1993, comp-gas/9305004.

[569]  M. L. Cartwright,et al.  Forced oscillations in nearly sinusoidal systems , 1948 .

[570]  Spyros G. Tzafestas,et al.  Computational Intelligence Techniques for Short-Term Electric Load Forecasting , 2001, J. Intell. Robotic Syst..

[571]  C. E. Puente,et al.  The Essence of Chaos , 1995 .

[572]  A. N. Sharkovsky IDEAL TURBULENCE IN AN IDEALIZED TIME-DELAYED CHUA’S CIRCUIT , 1994 .

[573]  Anastasios A. Tsonis,et al.  Multiple attractors, fractal basins and longterm climate dynamics , 1990 .

[574]  L. Rayleigh XXXI. On the problem of random vibrations, and of random flights in one, two, or three dimensions , 1919 .

[575]  On the constraints necessary for macroscopic prediction of time-dependent stochastic processes , 1993 .

[576]  B. Grammaticos,et al.  Quantum Chaos with Nonergodic Hamiltonians , 1986 .

[577]  Panos Macheras,et al.  Nonlinear Dynamics and Chaos Theory: Concepts and Applications Relevant to Pharmacodynamics , 2001, Pharmaceutical Research.

[578]  Otto E. Rössler,et al.  Different Types of Chaos in Two Simple Differential Equations , 1976 .

[579]  Lisa Borland,et al.  Microscopic dynamics of the nonlinear Fokker-Planck equation: A phenomenological model , 1998 .

[580]  Chaos in a quartic dynamical model , 1987 .

[581]  Yoshisuke Ueda,et al.  The road to chaos , 1992 .

[582]  Shigehiro Ushiki,et al.  Chaos in numerical analysis of ordinary differential equations , 1981 .

[583]  R. Devaney Reversible diffeomorphisms and flows , 1976 .

[584]  J. Gallas,et al.  Period four stability and multistability domains for the Hénon map , 2001 .

[585]  N. Wiener The Homogeneous Chaos , 1938 .

[586]  H. Aref Stirring by chaotic advection , 1984, Journal of Fluid Mechanics.

[587]  Michael N. Vrahatis,et al.  An efficient method for locating and computing periodic orbits of nonlinear mappings , 1995 .

[588]  S. White,et al.  Simulations of X-ray clusters , 1994, astro-ph/9408069.

[589]  M. Feigenbaum Presentation functions and scaling function theory for circle maps , 1988 .

[590]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[591]  O. Lanford Period doubling in one and several dimensions , 1983 .

[592]  G. Voyatzis,et al.  DEGENERATE BIFURCATIONS OF RESONANT TORI IN HAMILTONIAN SYSTEMS , 1999 .

[593]  O. Rössler CONTINUOUS CHAOS—FOUR PROTOTYPE EQUATIONS , 1979 .

[594]  Paul Manneville,et al.  Intermittency and the Lorenz model , 1979 .

[595]  O. Lanford A computer-assisted proof of the Feigenbaum conjectures , 1982 .

[596]  Leon O. Chua,et al.  Global unfolding of Chua's circuit , 1993 .

[597]  Akira Itō,et al.  Successive Subharmonic Bifurcations and Chaos in a Nonlinear Mathieu Equation , 1979 .

[598]  I. Percival,et al.  On nonintegrable systems with square root singularities in complex time , 1991 .

[599]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[600]  E. Ahmed,et al.  Knotted periodic orbits in Rössler’s equations , 1995 .

[601]  Kuznetsov,et al.  Birth of a strange nonchaotic attractor: A renormalization group analysis. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.