On updating signal subspaces

The authors develop an algorithm for adaptively estimating the noise subspace of a data matrix, as is required in signal processing applications employing the 'signal subspace' approach. The noise subspace is estimated using a rank-revealing QR factorization instead of the more expensive singular value or eigenvalue decompositions. Using incremental condition estimation to monitor the smallest singular values of triangular matrices, the authors can update the rank-revealing triangular factorization inexpensively when new rows are added and old rows are deleted. Experiments demonstrate that the new approach usually requires O(n/sup 2/) work to update an n*n matrix, and that it accurately tracks the noise subspace. >

[1]  G. Golub,et al.  Linear least squares solutions by householder transformations , 1965 .

[2]  J. Bunch,et al.  Rank-one modification of the symmetric eigenproblem , 1978 .

[3]  Richard P. Brent,et al.  A Note on Downdating the Cholesky Factorization , 1987 .

[4]  T. Chan Rank revealing QR factorizations , 1987 .

[5]  Jack J. Dongarra,et al.  Matrix Eigensystem Routines - EISPACK Guide, Second Edition , 1976, Lecture Notes in Computer Science.

[6]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[7]  G. Golub MATRIX DECOMPOSITIONS AND STATISTICAL CALCULATIONS , 1969 .

[8]  H. Golub,et al.  SOME MODIFIED MATRIX EIGENVALUE PROBLEMS * GENE , 2022 .

[9]  R. Kumaresan,et al.  Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood , 1982, Proceedings of the IEEE.

[10]  Paul Van Dooren,et al.  On Sigma-lossless transfer functions and related questions , 1983 .

[11]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[12]  Christian H. Bischof,et al.  Structure-Preserving and Rank-Revealing QR-Factorizations , 1991, SIAM J. Sci. Comput..

[13]  N. Higham Efficient algorithms for computing the condition number of a tridagonal matrix , 1986 .

[14]  C. Burrus,et al.  Array Signal Processing , 1989 .

[15]  L. Foster Rank and null space calculations using matrix decomposition without column interchanges , 1986 .

[16]  Robert Schreiber,et al.  Implementation of adaptive array algorithms , 1986, IEEE Trans. Acoust. Speech Signal Process..

[17]  Charles M. Rader,et al.  Hyperbolic householder transforms , 1988 .

[18]  G. Stewart The Effects of Rounding Error on an Algorithm for Downdating a Cholesky Factorization , 1979 .

[19]  D. Fuhrmann An algorithm for subspace computation, with applications in signal processing , 1988 .

[20]  Allan O. Steinhardt,et al.  Stabilized hyperbolic Householder transformations , 1989, IEEE Trans. Acoust. Speech Signal Process..

[21]  G. Golub,et al.  Tracking a few extreme singular values and vectors in signal processing , 1990, Proc. IEEE.

[22]  C. Bischof Incremental condition estimation , 1990 .

[23]  J. H. Wilkinson,et al.  AN ESTIMATE FOR THE CONDITION NUMBER OF A MATRIX , 1979 .

[24]  Charles Van Loan,et al.  Signal Processing Computations Using The Generalized Singular Value Decomposition , 1984, Optics & Photonics.

[25]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[26]  Jeffrey M. Speiser,et al.  Progress In Eigenvector Beamforming , 1986, Optics & Photonics.

[27]  S. Alexander,et al.  Analysis of a recursive least squares hyperbolic rotation algorithm for signal processing , 1988 .