An Embedding into an Orlicz Space for Irregular John Domains
暂无分享,去创建一个
[1] P. Harjulehto,et al. On the $(1,p)$-Poincaré inequality , 2012 .
[2] Vladimir Maz’ya,et al. Sobolev Spaces: with Applications to Elliptic Partial Differential Equations , 2011 .
[3] R. Wheeden,et al. Self-improving properties of inequalities of Poincaré type on measure spaces and applications , 2008 .
[4] B. V. Trushin. Embedding of Sobolev space in Orlicz space for a domain with irregular boundary , 2006 .
[5] Tomi Nieminen. GENERALIZED MEAN POROSITY AND DIMENSION , 2006 .
[6] P. Koskela,et al. Quasihyperbolic boundary conditions and Poincaré domains , 2002 .
[7] D. Edmunds,et al. Sobolev inequalities of exponential type , 2001 .
[8] T. Kilpeläinen,et al. Sobolev Inequalities on Sets with Irregular Boundaries , 2000 .
[9] Pekka Koskela,et al. Sobolev met Poincaré , 2000 .
[10] Vladimir Maz’ya,et al. Differentiable Functions on Bad Domains , 1998 .
[11] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[12] P. Lions,et al. Sobolev imbedding theorems in borderline cases , 1996 .
[13] Pertti Mattila,et al. Geometry of sets and measures in Euclidean spaces , 1995 .
[14] D. Stegenga,et al. Hölder domains and Poincaré domains , 1990 .
[15] O. Martio,et al. Lipschitz classes and quasiconformla mappings , 1985 .
[16] G. Martin. QUASICONFORMAL AND BI-LIPSCHITZ HOMEOMORPHISMS, UNIFORM DOMAINS AND THE QUASIHYPERBOLIC METRIC , 1985 .
[17] Yu. G. Reshetnyak. Integral representations of differentiable functions in domains with nonsmooth boundary , 1980 .
[18] F. Gehring,et al. Uniform domains and the quasi-hyperbolic metric , 1979 .
[19] J. Sarvas,et al. Injectivity theorems in plane and space , 1979 .
[20] F. Gehring,et al. Quasiconformally homogeneous domains , 1976 .
[21] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[22] L. Hedberg. On certain convolution inequalities , 1972 .
[23] Neil S. Trudinger,et al. On Imbeddings into Orlicz Spaces and Some Applications , 1967 .