A preconditioned two-step modulus-based matrix splitting iteration method for linear complementarity problem

Abstract In this paper, a preconditioned two-step modulus-based matrix splitting iteration method for linear complementarity problems associated with an M-matrix is proposed. The convergence analysis of the presented method is given. In particular, we provide a comparison theorem between preconditioned two-step modulus-based Gauss–Seidel (PTMGS) iteration method and two-step modulus-based Gauss–Seidel (TMGS) iteration method, which shows that PTMGS method improves the convergence rate of original TMGS method for linear complementarity problem. Numerical tested examples are used to illustrate the theoretical analysis.

[1]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[2]  Wen Li,et al.  A general modulus-based matrix splitting method for linear complementarity problems of HH-matrices , 2013, Appl. Math. Lett..

[3]  Li-Li Zhang,et al.  Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems , 2013, Appl. Math. Lett..

[4]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[5]  Zhong-Zhi Bai Modified Block SSOR Preconditioners for Symmetric Positive Definite Linear Systems , 2001, Ann. Oper. Res..

[6]  Weiwei Sun,et al.  Modified Gauss–Seidel type methods and Jacobi type methods for Z-matrices , 2000 .

[7]  O. Axelsson Iterative solution methods , 1995 .

[8]  Katta G. Murty,et al.  Linear complementarity, linear and nonlinear programming , 1988 .

[9]  Li-Li Zhang,et al.  Modulus‐based synchronous multisplitting iteration methods for linear complementarity problems , 2013, Numer. Linear Algebra Appl..

[10]  Li-Li Zhang,et al.  Two-step modulus-based matrix splitting iteration method for linear complementarity problems , 2011, Numerical Algorithms.

[11]  P. Wilmott,et al.  Option pricing: Mathematical models and computation , 1994 .

[12]  Hua Zheng,et al.  A preconditioned modulus-based iteration method for solving linear complementarity problems of H-matrices , 2016 .

[13]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[14]  R. Plemmons,et al.  Convergence of parallel multisplitting iterative methods for M-matrices , 1987 .

[15]  David J. Evans,et al.  Matrix multisplitting relaxation methods for linear complementarity problems , 1997, Int. J. Comput. Math..

[16]  Y. Ye,et al.  A Class of Linear Complementarity Problems Solvable in Polynomial Time , 1991 .

[17]  Wen Li,et al.  A preconditioned general modulus-based matrix splitting iteration method for linear complementarity problems of H-matrices , 2018, Numerical Algorithms.

[18]  Zhong-Zhi Bai On the convergence of additive and multiplicative splitting iterations for systems of linear equations , 2003 .

[19]  Li Wang,et al.  Preconditioned AOR iterative methods for M-matrices , 2009 .

[20]  Zhong-Zhi Bai,et al.  Modulus‐based matrix splitting iteration methods for linear complementarity problems , 2010, Numer. Linear Algebra Appl..

[21]  Zhong-Zhi Bai A class of modified block SSOR preconditioners for symmetric positive definite systems of linear equations , 1999, Adv. Comput. Math..

[22]  Rüdiger U. Seydel Tools for Computational Finance , 2002 .

[23]  Hao Liu,et al.  A modified general modulus-based matrix splitting method for linear complementarity problems of H-matrices , 2014 .

[24]  Ping-Fan Dai,et al.  A general preconditioner for linear complementarity problem with an M-matrix , 2017, J. Comput. Appl. Math..

[25]  Ning Zheng,et al.  Convergence of accelerated modulus-based matrix splitting iteration methods for linear complementarity problem with an H+-matrix , 2014, J. Comput. Appl. Math..

[26]  Ning Zheng,et al.  Accelerated modulus-based matrix splitting iteration methods for linear complementarity problem , 2012, Numerical Algorithms.

[27]  Zhong-Zhi Bai,et al.  On SSOR‐like preconditioners for non‐Hermitian positive definite matrices , 2016, Numer. Linear Algebra Appl..

[28]  Hua Zheng,et al.  A general accelerated modulus-based matrix splitting iteration method for solving linear complementarity problems , 2016 .

[29]  Wen Li,et al.  A relaxation modulus-based matrix splitting iteration method for solving linear complementarity problems , 2016, Numerical Algorithms.

[30]  Li-Li Zhang,et al.  Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems , 2012, Numerical Algorithms.