Pressures on a surface-mounted rectangular prism under varying incident turbulence

Abstract The pressure and load coefficients obtained from two groups of eight pressure taps on the upper surface of a surface-mounted prism are characterized in terms of their mean, rms, peak, probability distribution, peak correlations and durations. The prism is a 1:50 scale model of the WERFL experimental building at Texas Tech University. Results obtained with flows generated over seven different wind tunnel floor-roughness configurations in the boundary layer wind tunnel at Clemson University cover a wide range of turbulence intensities. The results presented include the spatial variation of the peak pressure and peak load coefficients, and their variations with incident turbulence. The stochastic characteristics of the peak coefficients are also addressed here. The results reveal that the distribution of the peak coefficients is in general well established by the Extreme Value Type I (Gumbel) distribution. Conditional sampling is employed to study the duration as well as the space and space–time correlations of the peaks. Analysis of the peaks reveals that those with the larger magnitudes are generally of longer duration.