Krotov: A Python implementation of Krotov's method for quantum optimal control

We present a new open-source Python package, krotov, implementing the quantum optimal control method of that name. It allows to determine time-dependent external fields for a wide range of quantum control problems, including state-to-state transfer, quantum gate implementation and optimization towards an arbitrary perfect entangler. Krotov's method compares to other gradient-based optimization methods such as gradient-ascent and guarantees monotonic convergence for approximately time-continuous control fields. The user-friendly interface allows for combination with other Python packages, and thus high-level customization. The package is being developed at this https URL

[1]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[2]  V. Krotov A Technique of Global Bounds in Optimal Control Theory , 1988 .

[3]  Jacob Sherson,et al.  Quantum optimal control in a chopped basis: Applications in control of Bose-Einstein condensates , 2018, Physical Review A.

[4]  Optimal control of time-dependent targets , 2004, quant-ph/0409124.

[5]  S. Schirmer,et al.  Efficient algorithms for optimal control of quantum dynamics: the Krotov method unencumbered , 2011, 1103.5435.

[6]  Christiane P. Koch,et al.  Quantum optimal control of photoelectron spectra and angular distributions , 2016 .

[7]  Christiane P. Koch,et al.  Training Schrödinger’s cat: quantum optimal control , 2015, 1508.00442.

[8]  Ido Schaefer,et al.  Semi-global approach for propagation of the time-dependent Schrödinger equation for time-dependent and nonlinear problems , 2016, J. Comput. Phys..

[9]  Christiane P. Koch,et al.  Robustness of high-fidelity Rydberg gates with single-site addressability , 2014, 1401.1858.

[10]  Lukin,et al.  Fast quantum gates for neutral atoms , 2000, Physical review letters.

[11]  S. Maniscalco,et al.  Beating the limits with initial correlations , 2017, 1703.04483.

[12]  B. Reif,et al.  Overcoming Volume Selectivity of Dipolar Recoupling in Biological Solid-State NMR Spectroscopy. , 2018, Angewandte Chemie.

[13]  S. Montangero,et al.  Optimal control of Rydberg lattice gases , 2017, 1702.07358.

[14]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[15]  Sophie Schirmer,et al.  Robust quantum gates for open systems via optimal control: Markovian versus non-Markovian dynamics , 2011, 1107.4358.

[16]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[17]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[18]  K. B. Whaley,et al.  Optimizing entangling quantum gates for physical systems , 2011 .

[19]  Ronnie Kosloff,et al.  Quantum computing by an optimal control algorithm for unitary transformations. , 2002, Physical review letters.

[20]  J. M. Gambetta,et al.  Optimal control methods for rapidly time-varying Hamiltonians , 2011, 1102.0584.

[21]  Tommaso Calarco,et al.  Optimizing for an arbitrary perfect entangler. II. Application , 2015 .

[22]  Adam Amara,et al.  HOPE: A Python Just-In-Time compiler for astrophysical computations , 2014, Astron. Comput..

[23]  J. Werschnik,et al.  Quantum optimal control theory , 2007, 0707.1883.

[24]  D. Tannor,et al.  Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits. , 2018, Physical review letters.

[25]  U. Hohenester,et al.  Optimal quantum control of Bose-Einstein condensates in magnetic microtraps: Comparison of gradient-ascent-pulse-engineering and Krotov optimization schemes , 2014, 1409.2976.

[26]  Liang Jiang,et al.  Implementing a universal gate set on a logical qubit encoded in an oscillator , 2016, Nature Communications.

[27]  G. Drobny,et al.  The tailored TOCSY experiment: Chemical shift selective coherence transfer , 1989 .

[28]  et al.,et al.  Jupyter Notebooks - a publishing format for reproducible computational workflows , 2016, ELPUB.

[29]  David J. Tannor,et al.  Loading a Bose-Einstein condensate onto an optical lattice: An application of optimal control theory to the nonlinear Schrödinger equation , 2002 .

[30]  S. Gleyzes,et al.  Fast and accurate circularization of a Rydberg atom , 2018, Physical Review A.

[31]  H. Rabitz,et al.  RAPIDLY CONVERGENT ITERATION METHODS FOR QUANTUM OPTIMAL CONTROL OF POPULATION , 1998 .

[32]  Tommaso Calarco,et al.  The quantum speed limit of optimal controlled phasegates for trapped neutral atoms , 2011, 1103.6050.

[33]  F. Caruso,et al.  Optimal preparation of quantum states on an atom chip device , 2014, 1405.6918.

[34]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[35]  M. Goerz Optimizing Robust Quantum Gates in Open Quantum Systems , 2015 .

[36]  Optimizing fingerprinting experiments for parameter identification: Application to spin systems , 2017, 1711.07658.

[37]  N. Khaneja,et al.  Heteronuclear decoupling by optimal tracking. , 2009, Journal of magnetic resonance.

[38]  D. Tannor,et al.  Design of Femtosecond Pulse Sequences to Control Photochemical Products , 1991 .

[39]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[40]  Carsten Hartmann,et al.  WavePacket: A Matlab package for numerical quantum dynamics.II: Open quantum systems, optimal control, and model reduction , 2017, Comput. Phys. Commun..

[41]  Sophie Shermer Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework , 2011 .

[42]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[43]  Pankaj Mehta,et al.  Reinforcement Learning in Different Phases of Quantum Control , 2017, Physical Review X.

[44]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[45]  Tommaso Calarco,et al.  Remote optimization of an ultracold atoms experiment by experts and citizen scientists , 2017, Proceedings of the National Academy of Sciences.

[46]  David J. Tannor,et al.  Control of Photochemical Branching: Novel Procedures for Finding Optimal Pulses and Global Upper Bounds , 1992 .

[47]  David J. Tannor,et al.  Optimal control with accelerated convergence: Combining the Krotov and quasi-Newton methods , 2011 .

[48]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[49]  S. Glaser,et al.  Second order gradient ascent pulse engineering. , 2011, Journal of magnetic resonance.

[50]  D. Schuster,et al.  Gradient-based optimal control of open quantum systems using quantum trajectories and automatic differentiation , 2019, Physical Review A.

[51]  K. Jacobs,et al.  Efficient optimization of state preparation in quantum networks using quantum trajectories , 2018, Quantum Science and Technology.

[52]  D. Schuster,et al.  Speedup for quantum optimal control from automatic differentiation based on graphics processing units , 2016, 1612.04929.

[53]  K. Życzkowski,et al.  Unitary quantum gates, perfect entanglers, and unistochastic maps , 2012, 1211.3287.

[54]  A. Borzì,et al.  Optimal quantum control of Bose-Einstein condensates in magnetic microtraps , 2007, quant-ph/0701094.

[55]  R. Kosloff,et al.  Optimal control theory for unitary transformations , 2003, quant-ph/0309011.

[56]  I. Bloch,et al.  Optimal control of complex atomic quantum systems , 2015, Scientific Reports.

[57]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[58]  Jens Jakob W. H. Sørensen,et al.  QEngine: A C++ library for quantum optimal control of ultracold atoms , 2018, Comput. Phys. Commun..

[59]  Sonia Schirmer,et al.  Implementation of quantum gates via optimal control , 2008, 0805.2902.

[60]  Thomas E Skinner,et al.  Optimal control design of pulse shapes as analytic functions. , 2010, Journal of magnetic resonance.

[61]  David J. Tannor,et al.  Laser cooling of molecular internal degrees of freedom by a series of shaped pulses , 1993 .

[62]  Ian R. Petersen,et al.  Quantum control theory and applications: A survey , 2009, IET Control Theory & Applications.

[63]  Tommaso Calarco,et al.  Optimal control technique for many-body quantum dynamics. , 2010, Physical review letters.

[64]  S. Glaser,et al.  An optimal control approach to design entire relaxation dispersion experiments. , 2017, Journal of magnetic resonance.

[65]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[66]  A. Lent,et al.  Computer-optimized narrowband pulses for multislice imaging , 1987 .

[67]  A. Borzì,et al.  Computational techniques for a quantum control problem with H1-cost , 2008 .

[68]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[69]  Yvon Maday,et al.  New formulations of monotonically convergent quantum control algorithms , 2003 .

[70]  D. Sugny,et al.  Monotonically convergent optimal control theory of quantum systems with spectral constraints on the control field , 2009, 0906.1051.

[71]  Steffen J Glaser,et al.  Shaped optimal control pulses for increased excitation bandwidth in EPR. , 2012, Journal of magnetic resonance.

[72]  Christiane P. Koch,et al.  Optimal control under spectral constraints: enforcing multi-photon absorption pathways , 2013 .

[73]  Gabriel Turinici,et al.  Generalized monotonically convergent algorithms for solving quantum optimal control problems. , 2004, The Journal of chemical physics.

[74]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[75]  V. Krotov,et al.  Global methods in optimal control theory , 1993 .

[76]  Christiane P. Koch,et al.  Steering the optimization pathway in the control landscape using constraints , 2013 .

[77]  R. Laflamme,et al.  Gradient-based closed-loop quantum optimal control in a solid-state two-qubit system , 2018, Physical Review A.

[78]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[79]  David J. Tannor,et al.  Controlled dissociation of I2 via optical transitions between the X and B electronic states , 1993 .

[80]  R. Horchani Laser cooling of internal degrees of freedom of molecules , 2016 .

[81]  Andreas Kaiser,et al.  Optimal control theory for a target state distributed in time: optimizing the probe-pulse signal of a pump-probe-scheme. , 2004, The Journal of chemical physics.

[82]  Christiane P. Koch,et al.  Protecting coherence in optimal control theory : State-dependent constraint approach , 2008, 0803.0921.

[83]  Karl P. Horn,et al.  Quantum optimal control of the dissipative production of a maximally entangled state , 2018, New Journal of Physics.

[84]  Christiane P Koch,et al.  Monotonically convergent optimization in quantum control using Krotov's method. , 2010, The Journal of chemical physics.

[85]  H. Rabitz,et al.  Optimal control of bond selectivity in unimolecular reactions , 1991 .

[86]  Herschel Rabitz,et al.  Monotonically convergent algorithm for quantum optimal control with dissipation , 1999 .

[87]  D. Lucarelli Quantum optimal control via gradient ascent in function space and the time-bandwidth quantum speed limit , 2016, Physical Review A.

[88]  Tommaso Calarco,et al.  Chopped random-basis quantum optimization , 2011, 1103.0855.

[89]  Matthias M. Müller,et al.  Prospects for fast Rydberg gates on an atom chip , 2011, Quantum Inf. Process..

[90]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[91]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[92]  Christiane P. Koch,et al.  Optimal control theory for a unitary operation under dissipative evolution , 2013, 1312.0111.

[93]  Mads Kock Pedersen,et al.  Exploring the quantum speed limit with computer games , 2015, Nature.

[94]  Harry Buhrman,et al.  The quantum technologies roadmap: a European community view , 2018, New Journal of Physics.

[95]  H. Rabitz,et al.  Quantum mechanical optimal control of physical observables in microsystems , 1990 .

[96]  Paul Watts,et al.  Metric Structure of the Space of Two-Qubit Gates, Perfect Entanglers and Quantum Control , 2013, Entropy.

[97]  Christiane P Koch,et al.  Controlling open quantum systems: tools, achievements, and limitations , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[98]  Samuel H. Tersigni,et al.  Wavepacket dancing: Achieving chemical selectivity by shaping light pulses , 1989 .

[99]  S Montangero,et al.  Optimal control at the quantum speed limit. , 2009, Physical review letters.

[100]  Herschel Rabitz,et al.  Optimal control of curve‐crossing systems , 1992 .

[101]  Reiner Anderl,et al.  A comparative study of programming languages for next-generation astrodynamics systems , 2018 .

[102]  Christiane P. Koch,et al.  Hybrid optimization schemes for quantum control , 2015, 1505.05331.

[103]  Tommaso Calarco,et al.  Optimizing for an arbitrary perfect entangler. I. Functionals , 2014, 1412.7347.

[104]  Christiane P. Koch,et al.  Charting the circuit QED design landscape using optimal control theory , 2016, 1606.08825.

[105]  Tommaso Calarco,et al.  Dressing the chopped-random-basis optimization: A bandwidth-limited access to the trap-free landscape , 2015, 1506.04601.

[106]  M. Lukin,et al.  Generation and manipulation of Schrödinger cat states in Rydberg atom arrays , 2019, Science.

[107]  Stuart A. Rice,et al.  Control of selectivity of chemical reaction via control of wave packet evolution , 1985 .