Revealing Corynebacterium glutamicum proteoforms through top-down proteomics

[1]  E. Korzeniewska,et al.  The soil bacterium, Corynebacterium glutamicum, from biosynthesis of value-added products to bioremediation: A master of many trades. , 2022, Environmental research.

[2]  J. Hardouin,et al.  Editorial: Bacterial Post-translational Modifications , 2022, Frontiers in Microbiology.

[3]  L. Fornelli,et al.  Characterization of large intact protein ions by mass spectrometry: What directions should we follow? , 2022, Biochimica et biophysica acta. Proteins and proteomics.

[4]  A. Brazma,et al.  The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences , 2021, Nucleic Acids Res..

[5]  J. Coorssen,et al.  Proteomes Are of Proteoforms: Embracing the Complexity , 2021, Proteomes.

[6]  T. Hirasawa,et al.  Induction of glutamic acid production by copper in Corynebacterium glutamicum , 2021, Applied Microbiology and Biotechnology.

[7]  J. Bunkenborg,et al.  Characterization of a novel + 70 Da modification in rhGM-CSF expressed in E. coli using chemical assays in combination with mass spectrometry , 2021, Amino Acids.

[8]  In Kwon Choi,et al.  TopMSV: A Web-Based Tool for Top-Down Mass Spectrometry Data Visualization. , 2021, Journal of the American Society for Mass Spectrometry.

[9]  Redox , 2020 .

[10]  Kohske Takahashi,et al.  Welcome to the Tidyverse , 2019, J. Open Source Softw..

[11]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[12]  Liangliang Sun,et al.  Identification and Quantification of Proteoforms by Mass Spectrometry , 2019, Proteomics.

[13]  Damian Szklarczyk,et al.  STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets , 2018, Nucleic Acids Res..

[14]  Jan Gorodkin,et al.  Cytoscape stringApp: Network analysis and visualization of proteomics data , 2018, bioRxiv.

[15]  Odile Burlet-Schiltz,et al.  VisioProt-MS: interactive 2D maps from intact protein mass spectrometry , 2018, Bioinform..

[16]  P. Kim,et al.  Recombinant Protein Expression System in Corynebacterium glutamicum and Its Application , 2018, Front. Microbiol..

[17]  C. Furusawa,et al.  Integrated Analysis of the Transcriptome and Metabolome of Corynebacterium glutamicum during Penicillin-Induced Glutamic Acid Production. , 2018, Biotechnology journal.

[18]  Liangliang Sun,et al.  Deep Top-Down Proteomics Using Capillary Zone Electrophoresis-Tandem Mass Spectrometry: Identification of 5700 Proteoforms from the Escherichia coli Proteome. , 2018, Analytical chemistry.

[19]  Yunfeng Zhao,et al.  A thioredoxin-dependent peroxiredoxin Q from Corynebacterium glutamicum plays an important role in defense against oxidative stress , 2018, PloS one.

[20]  Sergio Sanchez,et al.  Our microbes not only produce antibiotics, they also overproduce amino acids , 2017, The Journal of Antibiotics.

[21]  Leah V Schaffer,et al.  Elucidating Escherichia coli Proteoform Families Using Intact-Mass Proteomics and a Global PTM Discovery Database. , 2017, Journal of proteome research.

[22]  R. Freudl Beyond amino acids: Use of the Corynebacterium glutamicum cell factory for the secretion of heterologous proteins. , 2017, Journal of biotechnology.

[23]  Minoru Yoshida,et al.  Effect of lysine succinylation on the regulation of 2-oxoglutarate dehydrogenase inhibitor, OdhI, involved in glutamate production in Corynebacterium glutamicum , 2017, Bioscience, biotechnology, and biochemistry.

[24]  Frédéric Barras,et al.  Oxidative stress, protein damage and repair in bacteria , 2017, Nature Reviews Microbiology.

[25]  Takashi Hirasawa,et al.  Recent advances in amino acid production by microbial cells. , 2016, Current opinion in biotechnology.

[26]  C. Wittmann,et al.  Industrial Microorganisms: Corynebacterium glutamicum , 2016 .

[27]  Jeffrey E. Barrick,et al.  Large-scale analysis of post-translational modifications in E. coli under glucose-limiting conditions , 2016, bioRxiv.

[28]  Qiang Kou,et al.  TopPIC: a software tool for top-down mass spectrometry-based proteoform identification and characterization , 2016, Bioinform..

[29]  B. Seliger,et al.  Redox proteomics: Methods for the identification and enrichment of redox‐modified proteins and their applications , 2016, Proteomics.

[30]  Minoru Yoshida,et al.  Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction , 2015, MicrobiologyOpen.

[31]  H. Czapinska,et al.  High resolution structure of an M23 peptidase with a substrate analogue , 2015, Scientific Reports.

[32]  A. Varshavsky,et al.  Formyl-methionine as a degradation signal at the N-termini of bacterial proteins , 2015, Microbial cell.

[33]  Neil L. Kelleher,et al.  ProSight Lite: Graphical software to analyze top‐down mass spectrometry data , 2015, Proteomics.

[34]  Silke Machata,et al.  Complete posttranslational modification mapping of pathogenic Neisseria meningitidis pilins requires top‐down mass spectrometry , 2014, Proteomics.

[35]  N. Kelleher,et al.  Top Down proteomics: facts and perspectives. , 2014, Biochemical and biophysical research communications.

[36]  Masayuki Inui,et al.  Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation , 2013, Biotechnology and bioengineering.

[37]  Lloyd M. Smith,et al.  Proteoform: a single term describing protein complexity , 2013, Nature Methods.

[38]  C. Wittmann,et al.  Bio-based production of chemicals, materials and fuels -Corynebacterium glutamicum as versatile cell factory. , 2012, Current opinion in biotechnology.

[39]  Natalie I. Tasman,et al.  A Cross-platform Toolkit for Mass Spectrometry and Proteomics , 2012, Nature Biotechnology.

[40]  M. Bott,et al.  Two-component signal transduction in Corynebacterium glutamicum and other corynebacteria: on the way towards stimuli and targets , 2012, Applied Microbiology and Biotechnology.

[41]  H. Shimizu,et al.  Investigation of phosphorylation status of OdhI protein during penicillin- and Tween 40-triggered glutamate overproduction by Corynebacterium glutamicum , 2011, Applied Microbiology and Biotechnology.

[42]  S. Taguchi,et al.  Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in recombinant Corynebacterium glutamicum using propionate as a precursor. , 2011, Journal of biotechnology.

[43]  M. Bott,et al.  Target Genes, Consensus Binding Site, and Role of Phosphorylation for the Response Regulator MtrA of Corynebacterium glutamicum , 2010, Journal of bacteriology.

[44]  J. C. Tran,et al.  Multiplexed size separation of intact proteins in solution phase for mass spectrometry. , 2009, Analytical chemistry.

[45]  L. Kremer,et al.  Dynamic and structural characterization of a bacterial FHA protein reveals a new autoinhibition mechanism. , 2009, Structure.

[46]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[47]  Hisao Ito,et al.  Mutations of the Corynebacterium glutamicum NCgl1221 Gene, Encoding a Mechanosensitive Channel Homolog, Induce l-Glutamic Acid Production , 2007, Applied and Environmental Microbiology.

[48]  J. Kalinowski,et al.  The Extracytoplasmic Function-Type Sigma Factor SigM of Corynebacterium glutamicum ATCC 13032 Is Involved in Transcription of Disulfide Stress-Related Genes , 2007, Journal of bacteriology.

[49]  Michael Bott,et al.  Corynebacterial Protein Kinase G Controls 2-Oxoglutarate Dehydrogenase Activity via the Phosphorylation Status of the OdhI Protein* , 2006, Journal of Biological Chemistry.

[50]  M. Yoshida,et al.  Gene expression of Corynebacterium glutamicum in response to the conditions inducing glutamate overproduction , 2006, Letters in applied microbiology.

[51]  P. Limbach,et al.  Extending ribosomal protein identifications to unsequenced bacterial strains using matrix‐assisted laser desorption/ionization mass spectrometry , 2005, Proteomics.

[52]  M. Inui,et al.  Production of organic acids by Corynebacterium glutamicum under oxygen deprivation , 2005, Applied Microbiology and Biotechnology.

[53]  S. G. Odintsov,et al.  Latent LytM at 1.3A resolution. , 2004, Journal of molecular biology.

[54]  D. Petersen,et al.  Covalent adduction of nucleophilic amino acids by 4-hydroxynonenal and 4-oxononenal. , 2003, Chemico-biological interactions.

[55]  H. Shimizu,et al.  Effects of the changes in enzyme activities on metabolic flux redistribution around the 2-oxoglutarate branch in glutamate production by Corynebacterium glutamicum , 2003, Bioprocess and biosystems engineering.

[56]  F. McLafferty,et al.  Electrospray mass spectra from protein electroeluted from sodium dodecylsulfate polyacrylamide gel electrophoresis gels , 1999, Journal of the American Society for Mass Spectrometry.

[57]  S. Nakamori,et al.  Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum. , 1997, Bioscience, biotechnology, and biochemistry.

[58]  R. Jayaswal,et al.  Molecular cloning, sequencing, and expression of lytM, a unique autolytic gene of Staphylococcus aureus , 1997, Journal of bacteriology.

[59]  D. Cox,et al.  Wilson disease and Menkes disease: new handles on heavy-metal transport. , 1994, Trends in genetics : TIG.

[60]  H. Sahm,et al.  Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon , 1993, Journal of bacteriology.

[61]  D. Wessel,et al.  A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. , 1984, Analytical biochemistry.

[62]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.