A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling

Abstract The widespread use of Proton Exchange Membrane fuel cell for its unique advantages compelled researchers for precise modelling of its characteristics. Since, modelling becomes extremely important for better understanding, simulation, design, analysis and development of high efficiency fuel cell system. However, due to its non-linearity, multivariate and strongly coupled characteristics; mathematical modelling based on empirical equations was widely adopted. But, the shortage of data, complexity in modelling, and number of unknown parameters favored the use of optimization methods. Many optimization methods have been endeavored to model Proton Exchange Membrane fuel cell characteristics. However, no prior attempt has been made to consolidate the contributions. Hence, this paper comprehensively describes and discusses the various Artificial Intelligence/bio inspired methods applied for fuel cell parameter estimation problem. The methods background theory and its application to the problem is elaborated. It is envisioned that, this review will be a one stop solution to the researchers and engineers working in the area of fuel cell systems.

[1]  Ali Keyhani,et al.  Neural Network Modeling of Proton Exchange Membrane Fuel Cell , 2010, IEEE Transactions on Energy Conversion.

[2]  Ning Wang,et al.  A novel P systems based optimization algorithm for parameter estimation of proton exchange membrane fuel cell model , 2012 .

[3]  J Timmis,et al.  An artificial immune system for data analysis. , 2000, Bio Systems.

[4]  Alireza Rezazadeh,et al.  Artificial immune system-based parameter extraction of proton exchange membrane fuel cell , 2011 .

[5]  Kan Wu,et al.  A multiple colonies artificial bee colony algorithm for a capacitated vehicle routing problem and re-routing strategies under time-dependent traffic congestion , 2017, Comput. Ind. Eng..

[6]  K. Agbossou,et al.  Characterization of a Ballard MK5-E Proton Exchange Membrane Fuel Cell Stack , 2001 .

[7]  Y. Wang,et al.  Modeling and Dynamic Characteristic Simulation of a Proton Exchange Membrane Fuel Cell , 2009, IEEE Transactions on Energy Conversion.

[8]  Alireza Askarzadeh,et al.  Bird mating optimizer: An optimization algorithm inspired by bird mating strategies , 2014, Commun. Nonlinear Sci. Numer. Simul..

[9]  N. Rajasekar,et al.  A comprehensive review on solar PV maximum power point tracking techniques , 2017 .

[10]  Kazuyuki Mori,et al.  Immune Algorithm with Searching Diversity and its Application to Resource Allocation Problem , 1993 .

[11]  Chaohua Dai,et al.  Seeker Optimization Algorithm for Digital IIR Filter Design , 2010, IEEE Transactions on Industrial Electronics.

[12]  Dervis Karaboga,et al.  A modified Artificial Bee Colony algorithm for real-parameter optimization , 2012, Inf. Sci..

[13]  Ning Wang,et al.  Circular genetic operators based RNA genetic algorithm for modeling proton exchange membrane fuel cells , 2014 .

[14]  Byung Soo Kim,et al.  A hybrid genetic algorithm with two-stage dispatching heuristic for a machine scheduling problem with step-deteriorating jobs and rate-modifying activities , 2016, Comput. Ind. Eng..

[15]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[16]  Alireza Rezazadeh,et al.  Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach , 2013 .

[17]  Didier Mayer,et al.  A new approach to empirical electrical modelling of a fuel cell, an electrolyser or a regenerative fuel cell , 2004 .

[18]  N. Rajasekar,et al.  Comparative study of PEM fuel cell parameter extraction using Genetic Algorithm , 2015 .

[19]  Ning Wang,et al.  Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm , 2015 .

[20]  P Gheorghe,et al.  Tracing Some Open Problems in Membrane Computing , 2007 .

[21]  R. Venkata Rao,et al.  Teaching-Learning-Based Optimization: An optimization method for continuous non-linear large scale problems , 2012, Inf. Sci..

[22]  Xianguo Li,et al.  Mathematical modeling of proton exchange membrane fuel cells , 2001 .

[23]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[24]  M. Sedighizadeh,et al.  A Tribe Particle Swarm Optimization for Parameter Identification of Proton Exchange Membrane Fuel Cell (TECHNICAL NOTE) , 2014 .

[25]  Koan-Yuh Chang,et al.  The optimal design for PEMFC modeling based on Taguchi method and genetic algorithm neural networks , 2011 .

[26]  Uday K. Chakraborty,et al.  PEM fuel cell modeling using differential evolution , 2012 .

[27]  Daniel Hissel,et al.  Characterisation and modelling of a 5 kW PEMFC for transportation applications , 2006 .

[28]  David E. Goldberg,et al.  Genetic algorithms and Machine Learning , 1988, Machine Learning.

[29]  Yonghua Song,et al.  Seeker optimization algorithm: A novel stochastic search algorithm for global numerical optimization , 2010 .

[30]  M. Sedighizadeh,et al.  Parameter Optimization for a Pemfc Model With Particle Swarm Optimization , 2011 .

[31]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[32]  M.G. Simoes,et al.  Sensitivity analysis of the modeling parameters used in Simulation of proton exchange membrane fuel cells , 2005, IEEE Transactions on Energy Conversion.

[33]  Cédric Damour,et al.  Mechanistic Model versus Artificial Neural Network Model of a Single-Cell PEMFC , 2014 .

[34]  R. O’Hayre,et al.  Fuel Cell Fundamentals , 2005 .

[35]  Leandro dos Santos Coelho,et al.  A backtracking search algorithm combined with Burger's chaotic map for parameter estimation of PEMFC electrochemical model , 2014 .

[36]  X. D. Xue,et al.  Unified mathematical modelling of steady-state and dynamic voltage–current characteristics for PEM fuel cells , 2006 .

[37]  Wenyin Gong,et al.  Parameter optimization of PEMFC model with improved multi-strategy adaptive differential evolution , 2014, Eng. Appl. Artif. Intell..

[38]  Xin-Jian Zhu,et al.  Parameter optimization for a PEMFC model with a hybrid genetic algorithm , 2006 .

[39]  R. Venkata Rao,et al.  Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems , 2011, Comput. Aided Des..

[40]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[41]  N. Rajasekar,et al.  A novel approach for fuel cell parameter estimation using simple Genetic Algorithm , 2015 .

[42]  Mei-Ling Huang,et al.  Modified artificial bee colony algorithm for scheduling optimization for printed circuit board production , 2017 .

[43]  Pierre R. Roberge,et al.  Development and application of a generalised steady-state electrochemical model for a PEM fuel cell , 2000 .

[44]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[45]  Chaohua Dai,et al.  Seeker Optimization Algorithm for Optimal Reactive Power Dispatch , 2009, IEEE Transactions on Power Systems.

[46]  A. T. de Almeida,et al.  A new parameter extraction method for accurate modeling of PEM fuel cells , 2009 .

[47]  N. Rajasekar,et al.  Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review , 2017 .

[48]  Alireza Rezazadeh,et al.  A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell , 2011 .

[49]  H. Toghiani,et al.  Steady state and dynamic performance of proton exchange membrane fuel cells (PEMFCs) under various operating conditions and load changes , 2006 .

[50]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[51]  N. Rajasekar,et al.  Critical Evaluation of Genetic Algorithm Based Fuel Cell Parameter Extraction , 2015 .

[52]  Chaohua Dai,et al.  Seeker Optimization Algorithm , 2006, 2006 International Conference on Computational Intelligence and Security.

[53]  Kathryn A. Dowsland,et al.  Simulated Annealing , 1989, Encyclopedia of GIS.

[54]  Kauko Leiviskä,et al.  Validation of genetic algorithm results in a fuel cell model , 2010 .

[55]  Hassan Noura,et al.  The parameter identification of the Nexa 1.2 kW PEMFC's model using particle swarm optimization , 2015 .

[56]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[57]  Alireza Rezazadeh,et al.  Optimization of PEMFC model parameters with a modified particle swarm optimization , 2011 .

[58]  Alireza Rezazadeh,et al.  An Innovative Global Harmony Search Algorithm for Parameter Identification of a PEM Fuel Cell Model , 2012, IEEE Transactions on Industrial Electronics.

[59]  Luciane Neves Canha,et al.  An electrochemical-based fuel-cell model suitable for electrical engineering automation approach , 2004, IEEE Transactions on Industrial Electronics.

[60]  N. Jenkins,et al.  Proton exchange membrane (PEM) fuel cell stack configuration using genetic algorithms , 2004 .

[61]  Oguz Emrah Turgut,et al.  Optimal proton exchange membrane fuel cell modelling based on hybrid Teaching Learning Based Optimization – Differential Evolution algorithm , 2016 .

[62]  Wen-Yeau Chang Equivalent Circuit Parameters Estimation for PEM Fuel Cell Using RBF Neural Network and Enhanced Particle Swarm Optimization , 2013 .

[63]  D. Karaboga,et al.  A Simple and Global Optimization Algorithm for Engineering Problems: Differential Evolution Algorithm , 2004 .

[64]  Pinar Çivicioglu,et al.  Backtracking Search Optimization Algorithm for numerical optimization problems , 2013, Appl. Math. Comput..

[65]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[66]  Alireza Rezazadeh,et al.  A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer , 2013 .

[67]  Yulong Xu,et al.  A Hybrid Differential Evolution for Optimum Modeling of PEM Fuel Cells , 2014 .

[68]  N. Rajasekar,et al.  Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems , 2018 .

[69]  Alireza Rezazadeh,et al.  A new artificial bee swarm algorithm for optimization of proton exchange membrane fuel cell model parameters , 2011, Journal of Zhejiang University SCIENCE C.

[70]  Soteris A. Kalogirou,et al.  Artificial intelligence techniques for photovoltaic applications: A review , 2008 .

[71]  Ned Djilali,et al.  Computational modelling of polymer electrolyte membrane (PEM) fuel cells: Challenges and opportunities , 2007 .

[72]  Kang Li,et al.  An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models , 2014 .

[73]  Weifeng Gao,et al.  A modified artificial bee colony algorithm , 2012, Comput. Oper. Res..

[74]  Cuimei Bo,et al.  Modeling and optimization for proton exchange membrane fuel cell stack using aging and challenging P systems based optimization algorithm , 2016 .

[75]  Xuesong Yan,et al.  Parameter extraction of different fuel cell models with transferred adaptive differential evolution , 2015 .

[76]  Eberhard Gill,et al.  Swarm satellite mission scheduling & planning using Hybrid Dynamic Mutation Genetic Algorithm , 2017 .

[77]  Willy Charon,et al.  Real time modelling of the dynamic mechanical behaviour of PEMFC thanks to neural networks , 2013, Eng. Appl. Artif. Intell..

[78]  Gexiang Zhang,et al.  Parameter fitting of PEMFC models based on adaptive differential evolution , 2014 .

[79]  N. Rajasekar,et al.  Analysis on solar PV emulators: A review , 2018 .

[80]  Chaohua Dai,et al.  Reactive power dispatch considering voltage stability with seeker optimization algorithm , 2009 .

[81]  Atilla Biyikoglu,et al.  Review of proton exchange membrane fuel cell models , 2005 .

[82]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[83]  Q. Niu,et al.  A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells , 2014 .

[84]  Meiying Ye,et al.  Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization , 2009 .

[85]  Qi Li,et al.  Parameter Identification for PEM Fuel-Cell Mechanism Model Based on Effective Informed Adaptive Particle Swarm Optimization , 2011, IEEE Transactions on Industrial Electronics.

[86]  Gheorghe Paun,et al.  Computing with Membranes , 2000, J. Comput. Syst. Sci..

[87]  N. Rajasekar,et al.  Genetic Algorithm-based Modeling of PEM Fuel Cells Suitable for Integration in DC Microgrids , 2017 .

[88]  Wenyin Gong,et al.  Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution , 2013 .