FUZZY MODELING APPLIED TO THE WELFARE OF POULTRY FARMS WORKERS

The objective of this work was to develop a fuzzy model to classify the working environment in poultry farms. For this purpose, air temperature, relative humidity, noise level, and ammonia concentration were measured in a broiler house with lateral positive-pressure ventilation. Work days consisting of 8 hours were simulated and the results provide support for classifying the level of comfort under different thermal, noise and gas concentration conditions. Therefore, three input variables were used: temperature-humidity index (THI), noise level (dB) and ammonia concentration (ppm), and the output variable was the work environment classification (WEC). Sixty rules were defined based on combinations of THI, noise level and ammonia concentration and each result is a function of the combination of input data. Experimental data was used to test the application of the proposed model. The results indicate that the proposed methodology is promising for determining the worker well-being level, and aid in making decisions regarding the control of the work environment in order to reduce or eliminate sources considered stressful to humans.

[1]  E. C. Thom The Discomfort Index , 1959 .

[2]  J. R. Ogilvie Environmental systems: design and performance standards , 1997 .

[3]  H. S. Belding,et al.  Index for evaluating Heat Stress in Terms of resulting Physiological Strains. , 1955 .

[4]  Ilda de Fátima Ferreira Tinôco,et al.  AMMONIA: A REVIEW OF CONCENTRATION AND EMISSION MODELS IN LIVESTOCK STRUCTURES , 2009 .

[5]  Edgar O. Oviedo-Rondón,et al.  Technologies to mitigate the environmental impact of broiler production , 2008 .

[6]  J. A. Clark Environmental Aspects of Housing for Animal Production , 2013 .

[7]  Uzay Kaymak,et al.  Elicitation of expert knowledge for fuzzy evaluation of agricultural production systems , 2003 .

[8]  C. P. Yaglou,et al.  Control of heat casualties at military training centers. , 1957, A.M.A. archives of industrial health.

[9]  Irenilza de Alencar Nääs,et al.  Avaliação do nível de ruído em instalações para suínos , 2007 .

[10]  Irenilza de Alencar Nääs,et al.  Development of Algorithm Using Fuzzy Logic to Predict Estrus in Dairy Cows: Part I , 2007 .

[11]  Flávio Alves Damasceno,et al.  Bem-estar do animal e do trabalhador em galpões avícolas climatizados , 2014 .

[12]  Leonardo Schiassi,et al.  METODOLOGIA FUZZY APLICADA À AVALIAÇÃO DO AUMENTO DA TEMPERATURA CORPORAL EM FRANGOS DE CORTE , 2008 .

[13]  U. Kaymak,et al.  Eliciting Expert Knowledge for Fuzzy Evaluation of Agricultural Production Systems , 2002 .

[14]  Yoram Epstein,et al.  Thermal comfort and the heat stress indices. , 2006, Industrial health.

[15]  Danilo Florentino Pereira,et al.  Sistema fuzzy para estimativa do bem-estar de matrizes pesadas , 2008 .

[16]  Tadayuki Yanagi Junior,et al.  Zoneamento bioclimático da região sudeste do Brasil para o conforto térmico animal e humano , 2006 .

[17]  D. Sainsbury,et al.  24 – HEALTH PROBLEMS IN INTENSIVE ANIMAL PRODUCTION , 1981 .

[18]  Angelo Cataneo,et al.  METODOLOGIA DE DETERMINAÇÃO DE FUNÇÕES DE PERTINÊNCIA DE CONTROLA-DORES FUZZY PARA A AVALIAÇÃO ENERGÉTICA DE EMPRESAS DE AVICULTURA DE POSTURA , 2010 .

[19]  S. Sivanandam,et al.  Introduction to Fuzzy Logic using MATLAB , 2006 .

[20]  Irenilza de Alencar Nääs,et al.  Níveis de Ruídos na Produção de Matrizes Pesadas: Estudo de Caso , 2001 .

[21]  Yingkuan Wang Agricultural Engineering International : the CIGR Ejournal , 1999 .

[22]  Tadayuki Yanagi Junior,et al.  Mapping of potential use of evaporative cooling systems in Southeastern Brazil , 2009 .

[23]  Irenilza de Alencar Nääs,et al.  Ambiência aérea em alojamento de frangos de corte: poeira e gases , 2007 .