Review of encapsulation methods suitable for microbial biological control agents

Because of the rising demand for microbial biological control agents, research into novel formulation methods, especially bioencapsulation, has notably increased in the past years. The aim of this review is to present a detailed illustrated overview on current encapsulation methods that are applied or that may be tailored to living biological control agents, especially microbial organisms and entomopathogenic nematodes. Capsules are manufactured by forming droplets from liquids and solidifying the liquid droplets to form particles. In this review, the methods are presented according to the manner of droplet formation (dripping and emulsification) and are subsequently categorized by the process of gelation or membrane formation. In a further category this review expands on coating methods using polyelectrolytes with altering charges. We put emphasis on chemical aspects which seem especially useful for scientists working in biological control.

[1]  M. D. Moretti,et al.  Essential oil formulations useful as a new tool for insect pest control , 2008, AAPS PharmSciTech.

[2]  C. Onwulata Encapsulation of new active ingredients. , 2012, Annual review of food science and technology.

[3]  K. Vorlop,et al.  Entrapment of microbial cells within polyurethane hydrogel beads with the advantage of low toxicity , 1992 .

[4]  D. Poncelet,et al.  Fundamentals of dispersion in encapsulation technology , 1996 .

[5]  R. P. Ross,et al.  Anhydrobiotics: The challenges of drying probiotic cultures , 2008 .

[6]  F. Caruso,et al.  Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules. , 2000 .

[7]  J. Klein,et al.  Immobilisation of microbial cells in polymeric matrices , 1975, European Journal of Applied Microbiology and Biotechnology.

[8]  S. Boryniec,et al.  Biodegradation of some natural polymers in blends with polyolefines , 1999 .

[9]  Roger A. Sheldon,et al.  Enzyme Immobilization: The Quest for Optimum Performance , 2007 .

[10]  Yunyu Yi,et al.  Immobilization of Cells in Polysaccharide Gels , 2004 .

[11]  I. Takata,et al.  Immobilization of enzymes and microbial cells using carrageenan as matrix , 1979, Biotechnology and bioengineering.

[12]  K. B. Guiseley Chemical and physical properties of algal polysaccharides used for cell immobilization , 1989 .

[13]  G. Cirillo,et al.  Polymer in Agriculture: a Review , 2008 .

[14]  L. Grover,et al.  Cell encapsulation using biopolymer gels for regenerative medicine , 2010, Biotechnology Letters.

[15]  C. Lacroix,et al.  Gellan gum gel as entrapment matrix for high temperature fermentation processes: A rheological study , 1990 .

[16]  M. Vassileva,et al.  Interactions of an arbuscular mycorrhizal fungus with free or co-encapsulated cells ofRhizobium trifoliandYarowialipolytica inoculated into a soil-plant system , 2004, Biotechnology Letters.

[17]  M. Mcguire,et al.  Starch- and Flour-Based Sprayable Formulations: Effect on Rainfastness and Solar Stability of Bacillus thuringiensis , 1996 .

[18]  D. Avnir,et al.  Recent bio-applications of sol–gel materials , 2006 .

[19]  A. Steinbüchel,et al.  Microbial degradation of poly(amino acid)s. , 2004, Biomacromolecules.

[20]  Gorka Orive,et al.  History, challenges and perspectives of cell microencapsulation. , 2004, Trends in biotechnology.

[21]  H. Thiele,et al.  Ionotrope Gele von Polyuronsäuren , 1955 .

[22]  W. Ravensberg A Roadmap to the Successful Development and Commercialization of Microbial Pest Control Products for Control of Arthropods , 2011 .

[23]  Ales Prokop,et al.  Water Soluble Polymersfor Immunoisolation I: Complex Coacervation and Cytotoxicity , 1998 .

[24]  C. Bucke,et al.  The immobilization of microbial cells, subcellular organelles, and enzymes in calcium alginate gels , 1977, Biotechnology and bioengineering.

[25]  A. Buhr,et al.  Immobilization of biocatalysts in LentiKats , 1998 .

[26]  D. Poncelet,et al.  Immobilization of cells for application in the food industry. , 1994, Critical reviews in biotechnology.

[27]  K. D. VORLOP,et al.  Cell Immobilization within Coated Alginate Beads or Hollow Fibers Formed by Ionotropic Gelation , 1987 .

[28]  Ivar Storrø,et al.  Alginate as immobilization material: III. Diffusional properties , 1992, Biotechnology and bioengineering.

[29]  B. Tiersch,et al.  Polyelectrolyte complex formation at the interface of solutions , 1996 .

[30]  S. Fakirov Gelatin and Gelatin-Based Biodegradable Composites: Manufacturing, Properties, and Biodegradation Behavior , 2015 .

[31]  T. Butt,et al.  Molecular studies of co-formulated strains of the entomopathogenic fungus, Beauveria bassiana. , 2002, Journal of invertebrate pathology.

[32]  R. Wijffels Immobilized cells : basics and applications : proceedings of an international symposium organized under auspices of the Working Party on Applied Biocatalysis of the European Federation of Biotechnology, Noordwijkerhout, The Netherlands, November 26-29, 1995 , 1996 .

[33]  Rojan P John,et al.  Bio-encapsulation of microbial cells for targeted agricultural delivery , 2011, Critical reviews in biotechnology.

[34]  K. Mosbach,et al.  A general method for the immobilization of cells with preserved viability , 1983, European journal of applied microbiology and biotechnology.

[35]  W. Connick Formulation of living biological control agents with alginate , 1988 .

[36]  Helmuth Möhwald,et al.  Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. , 1998, Angewandte Chemie.

[37]  H. G. B. Jong,et al.  Koazervation: Entmischung in kolloiden Systemen , 1930 .

[38]  B. Su,et al.  Energy from photobioreactors: Bioencapsulation of photosynthetically active molecules, organelles, and whole cells within biologically inert matrices , 2008 .

[39]  Anant V. Patel,et al.  Synthesis of transparent aminosilane-derived silica based networks for entrapment of sensitive materials. , 2013, Chemical communications.

[40]  Gero Decher,et al.  Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials , 2003 .

[41]  C. Mulligan,et al.  Encapsulation in the food industry: a review. , 1999, International journal of food sciences and nutrition.

[42]  A. Sun Microencapsulation of Cells , 1997 .

[43]  Ronnie Willaert,et al.  GEL ENTRAPMENT AND MICRO-ENCAPSULATION: METHODS, APPLICATIONS AND ENGINEERING PRINCIPLES , 1996 .

[44]  Klaus Buchholz,et al.  Biocatalysts and Enzyme Technology , 2005 .

[45]  G. Skjåk-Bræk,et al.  Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads , 1989, Biotechnology and bioengineering.

[46]  I. Takata,et al.  Screening of matrix suitable for immobilization of microbial cells , 1977 .

[47]  S. Harding,et al.  Materials for Encapsulation , 2010, ETFA 2010.

[48]  D. Knorr Technology aspects related to microorganisms in functional foods , 1998 .

[49]  T. Coradin,et al.  Living Cells in Oxide Glasses , 2006 .

[50]  R. Whistler,et al.  Industrial Gums: Polysaccharides and Their Derivatives , 2012 .

[51]  G. Skjåk-Bræk,et al.  Alginate as immobilization matrix for cells. , 1990, Trends in biotechnology.

[52]  D. Hunkeler,et al.  Microencapsulation: a review of polymers and technologies with a focus on bioartificial organs , 1998 .

[53]  P. Dhulster,et al.  Improved method for immobilizing invertase-active whole cells of Saccharomyces cerevisiae in gelatin , 1983 .

[54]  D. Poncelet,et al.  Encapsulation and Immobilization Techniques , 1999 .

[55]  Y. Bashan Alginate Beads as Synthetic Inoculant Carriers for Slow Release of Bacteria That Affect Plant Growth , 1986, Applied and environmental microbiology.

[56]  K. Pommerening,et al.  Preparation and performance of symplex capsules , 1985 .

[57]  A. Mcloughlin Controlled Release of Immobilized Cells as a Strategy to Regulate Ecological Competence of Inocula , 1994 .

[58]  E. Murano Use of natural polysaccharides in the microencapsulation techniques , 1998 .

[59]  J. Overbeek,et al.  Phase separation in polyelectrolyte solutions; theory of complex coacervation. , 1957, Journal of cellular physiology. Supplement.

[60]  W. Takken,et al.  Infection of the malaria mosquito, Anopheles gambiae, with two species of entomopathogenic fungi: effects of concentration, co-formulation, exposure time and persistence , 2009, Malaria Journal.

[61]  Thibaud Coradin,et al.  Encapsulation of biomolecules in silica gels , 2001 .

[62]  E. Leenen Description of the Support Material , 2001 .

[63]  Anant V. Patel,et al.  Fermentation and microencapsulation of the nematophagous fungus Hirsutella rhossiliensis in a novel type of hollow beads , 2011, Applied Microbiology and Biotechnology.

[64]  D. Poncelet,et al.  Comparison of different technologies for alginate beads production , 2008 .

[65]  E. D. Valle,et al.  Cyclodextrins and their uses: a review , 2004 .

[66]  Y. Bashan INOCULANTS OF PLANT GROWTH-PROMOTING BACTERIA FOR USE IN AGRICULTURE , 1998 .

[67]  M. Vassileva,et al.  Application of free and Ca-alginate-entrapped Glomus deserticola and Yarowia lipolytica in a soil-plant system. , 2001, Journal of biotechnology.

[68]  C. Lacroix,et al.  Two-phase dispersion process for the production of biopolymer gel beads: effect of various parameters on bead size and their distribution , 1989 .

[69]  J. Marty,et al.  Encapsulation of Enzymes Using Polymers and Sol-Gel Techniques , 2006 .

[70]  R. Samuels,et al.  The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae) , 2011, Parasites & Vectors.

[71]  R. Wilkins Controlled Delivery of Crop Protection Agents , 1990 .

[72]  V. Lozinsky,et al.  On the possibility of mechanodestruction of poly(vinyl alcohol) molecules under moderate freezing of its concentrated water solutions , 1986 .

[73]  C. Lacroix,et al.  Effect of Chelatants on Gellan Gel Rheological Properties and Setting Temperature for Immobilization of Living Bifidobacteria , 1993, Biotechnology progress.

[74]  N. Tanaka,et al.  A new oral gelatinized sustained-release dosage form. , 1963, Journal of pharmaceutical sciences.

[75]  K. Mosbach,et al.  Preparation of Immobilized animal cells , 1980, FEBS letters.

[76]  K. Vorlop,et al.  Hollow Beads of Sulfoethyl Cellulose (SEC) on the Basis of Polyelectrolyte Complexes , 2000 .

[77]  J. Trevors,et al.  Environmental applications of immobilized microbial cells: A review , 1996, Journal of Industrial Microbiology.

[78]  M. Isman PLANT ESSENTIAL OILS FOR PEST AND DISEASE MANAGEMENT , 2000 .

[79]  L. Gianfreda,et al.  A new method of whole microbial cell immobilization , 1980, European journal of applied microbiology and biotechnology.

[80]  D. Poncelet,et al.  Encapsulation of Brewers Yeast in Chitosan Coated Carrageenan Microspheres by Emulsification/Thermal Gelation , 2004, Artificial cells, blood substitutes, and immobilization biotechnology.

[81]  L. Chan,et al.  Drug encapsulation in alginate microspheres by emulsification. , 1992, Journal of microencapsulation.

[82]  H. Medrano-Roldán,et al.  Sprayable granule formulations for Bacillus thuringiensis , 1996 .

[83]  Serge R. Guiot,et al.  Production of size-controlled gellan gum microbeads encapsulating gasoline-degrading bacteria , 2002 .

[84]  U. Prüße,et al.  Production of spherical beads by JetCutting , 2000 .

[85]  F. Lim,et al.  Microencapsulated islets as bioartificial endocrine pancreas. , 1980, Science.

[86]  H. D. Burges Formulation of Microbial Biopesticides: Beneficial microorganisms, nematodes and seed treatments , 1998 .

[87]  E. Quigley The Future of Probiotics , 2009 .

[88]  K. Vorlop,et al.  Neuartige Geleinschlußimmobilisate (LentiKatsTM) in der Biotechnologie , 1998 .

[89]  T. Hatakeyama,et al.  Lignin Structure, Properties, and Applications , 2009 .

[90]  H. Thiele,et al.  Ionotrope Gele von Polyuronsäuren: I. Bildung und Verhalten , 1955 .

[91]  V. Nedović,et al.  Applications of Cell Immobilisation Biotechnology , 2005 .

[92]  B. Su,et al.  Living hybrid materials capable of energy conversion and CO2 assimilation. , 2010, Chemical communications.

[93]  G. Prabakaran,et al.  Immobilization of Alginate-Encapsulated Bacillus thuringiensis var. israelensis Containing Different Multivalent Counterions for Mosquito Control , 2008, Current Microbiology.

[94]  Ireneusz Zbicinski,et al.  Spray Drying of Probiotics: Process Development and Scale-Up , 2010 .

[95]  Anant V. Patel,et al.  Entrapment of biological control agents applied to entomopathogenic nematodes , 1994 .

[96]  M. Rubner,et al.  Layer‐by‐Layer Processed Multilayers: Challenges and Opportunities , 2012 .

[97]  H. Scher Controlled-Release Delivery Systems for Pesticides , 1999 .

[98]  Serge Pérez,et al.  Conformations, Structures, and Morphologies of Celluloses , 2004 .

[99]  K. Vorlop,et al.  Immobilized Cells: Catalyst Preparation and Reaction Performance , 1983 .

[100]  H. Thiele,et al.  Zur Theorie der Bildung von Gelen , 1967 .

[101]  Ales Prokop,et al.  Water Soluble Polymers for Immunoisolation II: Evaluation of Multicomponent Microencapsulation Systems , 1998 .

[102]  A. Fournier,et al.  Production of alginate beads by emulsification/internal gelation. II. Physicochemistry , 1995, Applied Microbiology and Biotechnology.

[103]  R. Vidhyalakshmi Encapsulation "The Future of Probiotics"-A Review , 2009 .

[104]  O. Smidsrod,et al.  Gelation of gellan gum , 1987 .

[105]  E. Alteriis,et al.  Oxidized Starch as a Hardening Agent in the Gelatin-Immobilization of Living Yeast Cells , 1990 .

[106]  M. Vassileva,et al.  Preparation of gel-entrapped mycorrhizal inoculum in the presence or absence of Yarowia lipolytica , 2001, Biotechnology Letters.

[107]  E. Galindo,et al.  Spray-drying microencapsulation of Trichoderma harzianum conidias in carbohydrate polymers matrices , 2012 .