Optimal virtual orbitals to relax wave functions built up with transferred extremely localized molecular orbitals

Extremely localized molecular orbitals (ELMOs), namely orbitals strictly localized on molecular fragments, are easily transferable from one molecule to another one. Hence, they provide a natural way to set up the electronic structure of large molecules using a data base of orbitals obtained from model molecules. However, this procedure obviously increases the energy with respect to a traditional MO calculation. To gain accuracy, it is important to introduce a partial electron delocalization. This can be carried out by defining proper optimal virtual orbitals that supply an efficient set for nonorthogonal configurations to be employed in VB‐like expansions. © 2005 Wiley Periodicals, Inc. J Comput Chem 26: 827–835, 2005

[1]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[2]  S. F. Boys Construction of Some Molecular Orbitals to Be Approximately Invariant for Changes from One Molecule to Another , 1960 .

[3]  Shridhar R. Gadre,et al.  Molecular Tailoring Approach for Simulation of Electrostatic Properties , 1994 .

[4]  Shridhar R. Gadre,et al.  Tailoring approach for exploring electron densities and electrostatic potentials of molecular crystals , 2004 .

[5]  David L. Cooper,et al.  Optimization of virtual orbitals in the framework of a multiconfiguration spin-coupled wave function , 1998 .

[6]  M. Raimondi Valence body study of the potential energy surface for the system He … HF , 1984 .

[7]  M. Sironi,et al.  New basis set superposition error free ab initio MO-VB interaction potential: Molecular-dynamics simulation of water at critical and supercritical conditions , 1998 .

[8]  Determination of extremely localized molecular orbitals in the framework of density functional theory , 2004 .

[9]  S. L. Dixon,et al.  Fast, accurate semiempirical molecular orbital calculations for macromolecules , 1997 .

[10]  A. Fornili,et al.  Determination of extremely localized molecular orbitals and their application to quantum mechanics/molecular mechanics methods and to the study of intramolecular hydrogen bonding , 2003 .

[11]  M. Sironi,et al.  Ab initio MO VB study of water dimer , 1998 .

[12]  Paul G. Mezey,et al.  Ab initio quality properties for macromolecules using the ADMA approach , 2003, J. Comput. Chem..

[13]  David L. Cooper,et al.  Optimized spin-coupled virtual orbitals , 1996 .

[14]  Yang,et al.  Direct calculation of electron density in density-functional theory: Implementation for benzene and a tetrapeptide. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[15]  Paul G. Mezey,et al.  Ab Initio Quality Electron Densities for Proteins: A MEDLA Approach , 1994 .

[16]  Yang,et al.  Direct calculation of electron density in density-functional theory. , 1991, Physical review letters.

[17]  M. Sironi,et al.  An orthogonal approach to determine extremely localised molecular orbitals , 2000 .

[18]  M. Sironi,et al.  A NEW VARIATIONAL COUPLED-ELECTRON PAIR APPROACH TO THE INTERMOLECULAR INTERACTION CALCULATION IN THE FRAMEWORK OF THE VALENCE BOND THEORY : THE CASE OF THE WATER DIMER SYSTEM , 1999 .

[19]  P. Surján,et al.  Direct determination of fragment localized molecular orbitals and the orthogonality constraint , 2003 .

[20]  A. Saturno,et al.  One‐Center Expansion Wavefunctions for CH3−, CH4, and CH5+ , 1965 .

[21]  Paul G. Mezey,et al.  Ab Initio-Quality Electrostatic Potentials for Proteins: An Application of the ADMA Approach , 2002 .

[22]  A. Genoni,et al.  A novel approach to relax extremely localized molecular orbitals: the extremely localized molecular orbital–valence bond method , 2004 .

[23]  Shridhar R. Gadre,et al.  Ab initio quality one‐electron properties of large molecules: Development and testing of molecular tailoring approach , 2003, J. Comput. Chem..

[24]  S. Chiesa,et al.  The transferability of extremely localized molecular orbitals , 2000 .

[25]  Gábor Náray-Szabó,et al.  Chemical Fragmentation in Quantum Mechanical Methods , 2000, Comput. Chem..

[26]  Jean-Louis Rivail,et al.  Quantum chemical computations on parts of large molecules: the ab initio local self consistent field method , 1996 .

[27]  Cornelis Altona,et al.  Calculation and properties of non-orthogonal, strictly local molecular orbitals , 1985 .

[28]  Li,et al.  Density-matrix electronic-structure method with linear system-size scaling. , 1993, Physical review. B, Condensed matter.

[29]  S. L. Dixon,et al.  Semiempirical molecular orbital calculations with linear system size scaling , 1996 .

[30]  Antonino Famulari,et al.  A multireference valence bond approach to electronic excited states , 2001 .

[31]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[32]  Hermann Stoll,et al.  On the use of local basis sets for localized molecular orbitals , 1980 .

[33]  Weitao Yang,et al.  A density‐matrix divide‐and‐conquer approach for electronic structure calculations of large molecules , 1995 .

[34]  Jean-Louis Rivail,et al.  Specific force field parameters determination for the hybrid ab initio QM/MM LSCF method , 2002, J. Comput. Chem..

[35]  Paul G. Mezey,et al.  Macromolecular density matrices and electron densities with adjustable nuclear geometries , 1995 .

[36]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .