Noninvertibility and resonance in discrete-time neural networks for time-series processing

[1]  I. Prigogine,et al.  Formative Processes. (Book Reviews: Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations) , 1977 .

[2]  D. Aronson,et al.  Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study , 1982 .

[3]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[4]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[5]  W. Rheinboldt On a Moving-Frame Algorithm and the Triangulation of Equilibrium Manifolds , 1987 .

[6]  Mark A. Kramer,et al.  Algorithm 658: ODESSA–an ordinary differential equation solver with explicit simultaneous sensitivity analysis , 1988, TOMS.

[7]  H. Schuster,et al.  Proper choice of the time delay for the analysis of chaotic time series , 1989 .

[8]  Edward N. Lorenz,et al.  Computational chaos-a prelude to computational instability , 1989 .

[9]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[10]  Ioannis G. Kevrekidis,et al.  DISCRETE- vs. CONTINUOUS-TIME NONLINEAR SIGNAL PROCESSING OF Cu ELECTRODISSOLUTION DATA , 1992 .

[11]  Raymond A. Adomaitis,et al.  Noninvertibility in neural networks , 1993, IEEE International Conference on Neural Networks.

[12]  Andrew M. Stuart,et al.  Runge-Kutta methods for dissipative and gradient dynamical systems , 1994 .

[13]  Andreas S. Weigend,et al.  Time Series Prediction: Forecasting the Future and Understanding the Past , 1994 .

[14]  G. Deco,et al.  An Information-Theoretic Approach to Neural Computing , 1997, Perspectives in Neural Computing.