Normal bases and primitive elements over finite fields

Let q be a prime power, m>=2 an integer and A=(abcd)@?GL"2(F"q), where A (1101) if q=2 and m is odd. We prove an extension of the primitive normal basis theorem and its strong version. Namely, we show that, except for an explicit small list of genuine exceptions, for every q, m and A, there exists some primitive [email protected]?F"q"^"m such that both x and (ax+b)/(cx+d) produce a normal basis of F"q"^"m over F"q.

[1]  C. Hsu,et al.  A generalization of the primitive normal basis theorem , 2011 .

[2]  Tian Wen Primitive Normal Element and Its Inverse in Finite Fields , 2006 .

[3]  Stephen D. Cohen,et al.  The Primitive Normal Basis Theorem – Without a Computer , 2003 .

[4]  Xiwang Cao,et al.  On the existence of some specific elements in finite fields of characteristic 2 , 2012, Finite Fields Their Appl..

[5]  W. Schmidt Equations over Finite Fields: An Elementary Approach , 1976 .

[6]  Stephen D. Cohen,et al.  Explicit theorems on generator polynomials , 2005, Finite Fields Their Appl..

[7]  Stephen D. Cohen,et al.  Primitive Normal Bases with Prescribed Trace , 1999, Applicable Algebra in Engineering, Communication and Computing.

[8]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[9]  H. Davenport,et al.  ON PRIMITIVE ROOTS IN FINITE FIELDS , 1937 .

[10]  L Carlitz Some Problems Involving Primitive Roots in a Finite Field. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Giorgos Kapetanakis,et al.  An extension of the (strong) primitive normal basis theorem , 2014, Applicable Algebra in Engineering, Communication and Computing.

[12]  Stephen D. Cohen Gauss sums and a sieve for generators of Galois fields , 2000, Publicationes Mathematicae Debrecen.

[13]  Sophie Huczynska Existence Results for Finite Field Polynomials with Specified Properties , 2013, Finite Fields and Their Applications.

[14]  Todd Cochrane,et al.  Using Stepanov's method for exponential sums involving rational functions , 2006 .

[15]  H. Davenport Bases for Finite Fields , 1968 .

[16]  G. I. Perel'muter Estimation of a sum along an algebraic curve , 1969 .

[17]  The strong primitive normal basis theorem , 2006, math/0610400.

[18]  Rudolf Lide,et al.  Finite fields , 1983 .

[19]  L. Carlitz,et al.  Primitive roots in a finite field , 1952 .

[20]  H. Lenstra,et al.  Primitive normal bases for finite fields , 1987 .

[21]  F. N. Castro,et al.  Mixed exponential sums over finite fields , 2000 .