The spatial scale of habitat selection by red deer

Accounting for spatial scale is essential for understanding habitat selection, but few studies have used spa- tial statistics to reveal the characteristic scale at which organisms respond to their environment. We studied habitat selection by GPS-tracked red deer (Cervus elaphus L., 1758) in the Pyrenees Mountains, France, by applying a geo- statistical model that compares autocorrelation of a resource between used and available sites to uncover the scale at which animals assess habitat. Using an artificial landscape, we demonstrated that the model can handle discrete habitat classes. Based on conventional hierarchical analysis, deer selected for open habitat, especially meadow, and avoided coniferous forest, more strongly at the coarse level of the home range than GPS locations. Home ranges ex- hibited generally lower autocorrelation in elevation and meadow habitat than random locations within the population range, indicative of preference for high habitat heterogeneity. Mean maximum discrepancy in autocorrelation, which was more pronounced at the level of the home range than GPS locations, occurred at 830 m for meadow habitat and at 1511 m for elevation, suggesting that red deer responded to their environment at this scale. Our study dem- onstrates how spatial statistics can serve as an instructive complement to conventional approaches to habitat selec- tion. Resume´ : L'etude de l'echelle spatiale est essentielle pour comprendre la selection de l'habitat, mais peu d'etudes ont utilisedes statistiques spatiales pour reveler l'echelle caracteristique alaquelle un organisme repond ason envi- ronnement. Nous avons etudiela selection de l'habitat par des cerfs rouges (Cervus elaphus L., 1758) suivis par GPS dans les montagnes pyreneennes, en France, en appliquant un modele geostatistique, qui compare l'autocorre´- lation d'une ressource entre les sites utilises et disponibles pour decouvrir l'echelle a laquelle les animaux evaluent leur habitat. Apartir d'un paysage artificiel, nous demontrons que ce modele peut etre generalisepour traiter des classes discretes d'habitat. D'apres une analyse hierarchique conventionnelle, les cerfs selectionnent un habitat ouvert, plus particulierement les prairies, et evitent les forets de coniferes, de facon plus marquee au niveau plus grossier du domaine vital que celui des localisations GPS. Les domaines revelent generalement une plus faible autocorrela- tion pour l'altitude et l'habitat prairie que les localisations aleatoires dans le domaine populationnel, revelateur d'une preference pour une forte heterogeneited'habitats. L'ecart moyen maximum d'autocorrelation, plus prononcea` l'echelle du domaine individuel que des localisations GPS, est de 830 m pour l'habitat prairie et de 1511 m pour l'altitude, ce qui laisse croire que le cerf reagit ason environnement a cette echelle. Notre etude demontre comment les statistiques spatiales peuvent servir de complement instructif aux approches conventionnelles de selection de l'habitat.

[1]  S. Albon,et al.  Plant phenology and the benefits of migration in a temperate ungulate , 1992 .

[2]  Timothy D. Reynolds,et al.  STUDY DESIGNS AND TESTS FOR COMPARING RESOURCE USE AND AVAILABILITY , 1990 .

[3]  Darcy R. Visscher,et al.  Scales of movement by elk (Cervus elaphus) in response to heterogeneity in forage resources and predation risk , 2005, Landscape Ecology.

[4]  J. A. Schaefer,et al.  Habitat selection as a hierarchy: the spatial scales of winter foraging by muskoxen , 1995 .

[5]  RYAN M. NIELSON,et al.  Habitat Selection of Rocky Mountain Elk in a Nonforested Environment , 2007 .

[6]  Wilfried Thuiller,et al.  Accuracy of resource selection functions across spatial scales , 2006 .

[7]  Deborah A. Jenkins,et al.  Winter Resource Selection of Reintroduced Elk and Sympatric White-tailed Deer at Multiple Spatial Scales , 2007 .

[8]  D. Klein,et al.  Habitat and diet selection by muskoxen and reindeer in western Alaska , 2001 .

[9]  J. Hoef,et al.  Distribution and density of moose in relation to landscape characteristics: effects of scale , 2005 .

[10]  Mark Hebblewhite,et al.  A MULTI-SCALE TEST OF THE FORAGE MATURATION HYPOTHESIS IN A PARTIALLY MIGRATORY UNGULATE POPULATION , 2008 .

[11]  T. Clutton‐Brock,et al.  Sexual segregation and density-related changes in habitat use in male and female Red deer (Cerrus elaphus) , 1987 .

[12]  A. Mysterud,et al.  Plant phenology, migration and geographical variation in body weight of a large herbivore: the effect of a variable topography , 2001 .

[13]  J. Kie,et al.  Effects of scale on interpreting life‐history characteristics of ungulates and carnivores , 2006 .

[14]  F. Messier,et al.  Hierarchical habitat selection by woodland caribou: its relationship to limiting factors , 2000 .

[15]  S. J. Mayor,et al.  Geostatistics reveal the scale of habitat selection , 2007 .

[16]  Mark S. Boyce,et al.  Scale for resource selection functions , 2006 .

[17]  B. Guibert,et al.  Utilisation de l'habitat forestier par le cerf (cervus elaphus) dans le massif d'Is-sur-Tille (Côte-d'Or) , 1996 .

[18]  Monica G. Turner,et al.  Scale and heterogeneity in habitat selection by elk in Yellowstone National Park , 2003 .

[19]  G. Janeau,et al.  Red deer Cervus elaphus resting place characteristics obtained from differential GPS data in a forest habitat , 2008, European Journal of Wildlife Research.

[20]  S. Levin The problem of pattern and scale in ecology , 1992 .

[21]  S. Mccorquodale,et al.  Sex-specific movements and habitat use by elk in the cascade range of Washington , 2003 .

[22]  Atle Mysterud,et al.  Large‐scale habitat variability, delayed density effects and red deer populations in Norway , 2002 .

[23]  Douglas H. Johnson THE COMPARISON OF USAGE AND AVAILABILITY MEASUREMENTS FOR EVALUATING RESOURCE PREFERENCE , 1980 .

[24]  Monica G. Turner,et al.  Scale detection in real and artificial landscapes using semivariance analysis , 1998, Landscape Ecology.

[25]  DANA L. THOMAS,et al.  Study Designs and Tests for Comparing Resource Use and Availability II , 2006 .

[26]  S. Carpenter,et al.  Scale of spatial pattern: four methods compared , 1983, Vegetatio.

[27]  H. Verheyden-Tixier,et al.  Variations of diet composition of Red Deer (Cervus elaphus L.) in Europe , 2001 .

[28]  P. Legendre,et al.  Developments in Numerical Ecology , 1988 .

[29]  Derek W. Bailey,et al.  Large Herbivore Foraging and Ecological HierarchiesLandscape ecology can enhance traditional foraging theory , 1987 .

[30]  M. Dale,et al.  Quadrat variance analysis and pattern development during primary succession , 1990 .

[31]  N. LeRoy Poff,et al.  Context-dependent perceptual ranges and their relevance to animal movements in landscapes , 2004 .

[32]  N. Morellet,et al.  Spatial heterogeneity of winter forest resources used by deer , 1999 .

[33]  S P Mahoney,et al.  Spectrum of selection: new approaches to detecting the scale-dependent response to habitat. , 2007, Ecology.

[34]  Thiago F. Rangel,et al.  Towards an integrated computational tool for spatial analysis in macroecology and biogeography , 2006 .

[35]  R. Macarthur The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture , 2005 .