Dynamic selective pressure using hybrid evolutionary and ant system strategies for structural optimization

Genetic algorithms have already been applied to various fields of engineering problems as a general optimization tool in charge of expensive sampling of the coded design space. In order to reduce such a computational cost in practice, application of evolutionary strategies is growing rapidly in the adaptive use of problem-specific information. This paper proposes a hybrid strategy to utilize a cooperative dynamic memory of more competitive solutions combining indirect information share in ant systems with direct constructive genetic search. Some proper coding techniques are employed to enable testing the method with various sets of control parameters. As a challenging field of interest, its application to structural layout optimization is considered while an example of a traveling salesman problem is also treated as a combinatorial benchmark. Copyright © 2007 John Wiley & Sons, Ltd.

[1]  Kenneth A. De Jong,et al.  Genetic Algorithms are NOT Function Optimizers , 1992, FOGA.

[2]  Michael Affenzeller,et al.  SASEGASA: An Evolutionary Algorithm for Retarding Premature Convergence by Self-adaptive Selection Pressure Steering , 2003, IWANN.

[3]  BeyerHans-Georg Toward a theory of evolution strategies , 1993 .

[4]  A. Fraser Simulation of Genetic Systems by Automatic Digital Computers VI. Epistasis , 1960 .

[5]  Dirk Thierens,et al.  Scalability Problems of Simple Genetic Algorithms , 1999, Evolutionary Computation.

[6]  Ali Kaveh,et al.  SIMULATED ANNEALING AND ADAPTIVE DYNAMIC VARIABLE BAND MUTATION FOR STRUCTURAL OPTIMIZATION BY GENETIC ALGORITHMS , 2006 .

[7]  Franz Rothlauf,et al.  Representations for genetic and evolutionary algorithms , 2002, Studies in Fuzziness and Soft Computing.

[8]  Erik D. Goodman,et al.  The hierarchical fair competition (HFC) model for parallel evolutionary algorithms , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[9]  Carlos Artemio Coello-Coello,et al.  Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art , 2002 .

[10]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[11]  S. Chai,et al.  An application of relative difference quotient algorithm to topology optimization of truss structures with discrete variables , 1999 .

[12]  John A. W. McCall,et al.  Statistical optimisation and tuning of GA factors , 2005, 2005 IEEE Congress on Evolutionary Computation.

[13]  Ali Kaveh,et al.  Topology optimization of trusses using genetic algorithm, force method and graph theory , 2003 .

[14]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[15]  Tomoyuki Hiroyasu,et al.  Structural optimization by real-coded probabilistic model-building GA , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[16]  Ali Kaveh,et al.  DIRECT INDEX CODING FOR DISCRETE SIZING OPTIMIZATION OF STRUCTURES BY GENETIC ALGORITHMS , 2005 .

[17]  Lothar M. Schmitt,et al.  Theory of genetic algorithms , 2001, Theor. Comput. Sci..

[18]  Richard W. Furlong Column Slenderness and Charts for Design , 1971 .

[19]  Michael Affenzeller A GENERIC EVOLUTIONARY COMPUTATION APPROACH BASED UPON GENETIC ALGORITHMS AND EVOLUTION STRATEGIES , 2003 .

[20]  Marco Dorigo,et al.  Distributed Optimization by Ant Colonies , 1992 .

[21]  D. Thierens Adaptive mutation rate control schemes in genetic algorithms , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[22]  Alex Fraser,et al.  Simulation of Genetic Systems by Automatic Digital Computers I. Introduction , 1957 .

[23]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[24]  Kennetb A. De Genetic Algorithms Are NOT Function Optimizers , 1992 .

[25]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: The (, )-Theory , 1994, Evolutionary Computation.

[26]  M. Galante,et al.  GENETIC ALGORITHMS AS AN APPROACH TO OPTIMIZE REAL‐WORLD TRUSSES , 1996 .

[27]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[28]  A. Kaveh,et al.  Simultaneous topology and size optimization of structures by genetic algorithm using minimal length chromosome , 2006 .

[29]  K. Deb,et al.  Design of truss-structures for minimum weight using genetic algorithms , 2001 .

[30]  Ali Kaveh,et al.  Optimal structural design family by genetic search and ant colony approach , 2008 .

[31]  Muhammad N. S Hadi,et al.  DISCRETE OPTIMIZATION OF TRUSS STRUCTURES WITH GEOMETRICALLY NON-LINEAR BEHAVIOUR USING GENETIC ALGORITHMS , 2002 .

[32]  T. Beker,et al.  Noise and Elitism in Evolutionary Computation , 2002, HIS.

[33]  Michael Affenzeller TRANSFERRING THE CONCEPT OF SELECTIVE PRESSURE FROM EVOLUTIONARY STRATEGIES TO GENETIC ALGORITHMS , 2003 .

[34]  E. Hinton,et al.  Optimization of trusses using genetic algorithms for discrete and continuous variables , 1999 .

[35]  Marcus Gallagher,et al.  A hybrid approach to parameter tuning in genetic algorithms , 2005, 2005 IEEE Congress on Evolutionary Computation.

[36]  S. Rajeev,et al.  Discrete Optimization of Structures Using Genetic Algorithms , 1992 .

[37]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[38]  Shahram Pezeshk,et al.  Design of Framed Structures Using a Genetic Algorithm , 1997 .

[39]  Jasbir S. Arora,et al.  Optimal design of steel structures using standard sections , 1997 .

[40]  Soraya B. Rana,et al.  Representation Issues in Neighborhood Search and Evolutionary Algorithms , 1998 .

[41]  David E. Goldberg,et al.  ENGINEERING OPTIMIZATION VIA GENETIC ALGORITHM, IN WILL , 1986 .

[42]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[43]  Ali Kaveh,et al.  Structural Mechanics: Graph and Matrix Methods , 1995 .

[44]  Antonella Carbonaro,et al.  Ant Colony Optimization: An Overview , 2002 .

[45]  Michael Affenzeller,et al.  SASEGASA: A New Generic Parallel Evolutionary Algorithm for Achieving Highest Quality Results , 2004, J. Heuristics.

[46]  T. Back Selective pressure in evolutionary algorithms: a characterization of selection mechanisms , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[47]  Carlos A. Coello Coello,et al.  THEORETICAL AND NUMERICAL CONSTRAINT-HANDLING TECHNIQUES USED WITH EVOLUTIONARY ALGORITHMS: A SURVEY OF THE STATE OF THE ART , 2002 .

[48]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[49]  Ali Kaveh,et al.  A hybrid ant strategy and genetic algorithm to tune the population size for efficient structural optimization , 2007 .

[50]  L. Schmitt Fundamental Study Theory of genetic algorithms , 2001 .