Finite energy solitons in highly anisotropic two dimensional ferromagnets

e study the solitons, stabilized by spin precession in a classical two--dimensional lattice model of Heisenberg ferromagnets with non-small easy--axis anisotropy. The properties of such solitons are treated both analytically using the continuous model including higher then second powers of magnetization gradients, and numerically for a discrete set of the spins on a square lattice. The dependence of the soliton energy $E$ on the number of spin deviations (bound magnons) $N$ is calculated. We have shown that the topological solitons are stable if the number $N$ exceeds some critical value $N_{\rm{cr}}$. For $N 0.6 J$ we found some fundamentally new soliton features absent for continuous models incorporating even the higher powers of magnetization gradients. For high anisotropy, the dependence of soliton energy E(N) on the number of bound magnons become non-monotonic, with the minima at some "magic" numbers of bound magnons. Soliton frequency $\omega (N)$ have quite irregular behavior with step-like jumps and negative values of $\omega $ for some regions of $N$. Near these regions, stable static soliton states, stabilized by the lattice effects, exist.

[1]  B. Ivanov Mesoscopic antiferromagnets: statics, dynamics, and quantum tunneling (Review) , 2005 .

[2]  B. Ivanov,et al.  Dynamics of topological solitons in two-dimensional ferromagnets , 2005, cond-mat/0505542.

[3]  B. Ivanov,et al.  Semiclassical dynamics of domain walls in the one-dimensional Ising ferromagnet in a transverse field , 2004, cond-mat/0404014.

[4]  B. Ivanov,et al.  Magnon modes for a circular two-dimensional easy-plane ferromagnet in the cone state , 2002 .

[5]  A. Pires,et al.  Topological and dynamical excitations in a classical 2D easy-axis Heisenberg model , 2001 .

[6]  B. Ivanov,et al.  Small-amplitude mobile solitons in the two-dimensional ferromagnet , 2001 .

[7]  A. Kovalev,et al.  Dynamics of domain walls and solitons in easy-plane magnets with weak exchange interaction , 1999 .

[8]  A. Kovalev,et al.  Exotic solitons in magnets with strongly anisotropic exchange interaction , 1999 .

[9]  A. Bishop,et al.  Dynamics of Vortices in Two-Dimensional Magnets , 1999, cond-mat/9903037.

[10]  A. Pires,et al.  Low-temperature static and dynamic behavior of the two-dimensional easy-axis Heisenberg model , 1999, cond-mat/9902149.

[11]  Y. Kivshar,et al.  Resonance properties of domain walls in ferromagnets with a weak exchange interaction , 1998 .

[12]  A. Kovalev,et al.  Nonlinear localized excitations in magnets with a weak exchange interaction as a soliton problem , 1998 .

[13]  C. E. Zaspel,et al.  IMPURITY-PINNED SOLITONS IN THE TWO-DIMENSIONAL ANTIFERROMAGNET DETECTED BY ELECTRON PARAMAGNETIC RESONANCE , 1998 .

[14]  B. Ivanov,et al.  On the structure and stability of two-dimensional dynamic solitons in ferromagnets , 1997 .

[15]  C. E. Zaspel,et al.  Field dependence of the soliton contribution to the dynamic correlation function of a classical Heisenberg antiferromagnet , 1997 .

[16]  C. E. Zaspel,et al.  ELECTRON PARAMAGNETIC RESONANCE DETECTION OF SOLITONS IN TWO-DIMENSIONAL MAGNETS , 1996 .

[17]  Ivanov,et al.  Normal modes and soliton resonance for vortices in 2D classical antiferromagnets. , 1996, Physical review letters.

[18]  Drumheller,et al.  Soliton contribution to the electron paramagnetic resonance linewidth in the two-dimensional antiferromagnetic. , 1995, Physical review letters.

[19]  Valerii M. Vinokur,et al.  Vortices in high-temperature superconductors , 1994 .

[20]  F. Waldner Are Skyrmions (2D solitons) observable in 2D antiferromagnets , 1992 .

[21]  R. Leese Q-Lumps and their interactions , 1991 .

[22]  B. Ivanov,et al.  Magnetic vortices The microscopic analogs of magnetic bubbles , 1990 .

[23]  F. Waldner Two dimensional soliton energy and ESR in AFM , 1986 .

[24]  F. Waldner Two-dimensional soliton contribution to the ESR linewidth in layered antiferromagnets? , 1983 .

[25]  N. D. Mermin,et al.  The topological theory of defects in ordered media , 1979 .

[26]  U. Enz A particle model based on stringlike solitons , 1978 .

[27]  U. Enz A new type of soliton with particle properties , 1977 .

[28]  M. Tinkham,et al.  Far-infrared laser spectroscopy of the linear Ising system Co Cl 2 · 2 H 2 O , 1974 .

[29]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[30]  M. Tinkham,et al.  Excitation of Multiple-Magnon Bound States in Co Cl 2 ·2 H 2 O , 1969 .

[31]  M. Tinkham,et al.  Magnon Bound States in Anisotropic Linear Chains , 1969 .

[32]  R. Hobart Non-linear field equilibria , 1965 .

[33]  G. Derrick Comments on Nonlinear Wave Equations as Models for Elementary Particles , 1964 .

[34]  R. Hobart On the Instability of a Class of Unitary Field Models , 1963 .

[35]  T. Skyrme,et al.  A non-linear field theory , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[36]  Kawabata,et al.  Dynamical correlations from mobile vortices in two-dimensional easy-plane ferromagnets. , 1989, Physical review. B, Condensed matter.

[37]  S. Shapiro,et al.  Spin structure and magnetic excitations in a 2D xy ferromagnet: CoCl2-intercalated graphite , 1989 .