The Two Sources of Solar Energetic Particles

Evidence for two different physical mechanisms for acceleration of solar energetic particles (SEPs) arose 50 years ago with radio observations of type III bursts, produced by outward streaming electrons, and type II bursts from coronal and interplanetary shock waves. Since that time we have found that the former are related to “impulsive” SEP events from impulsive flares or jets. Here, resonant stochastic acceleration, related to magnetic reconnection involving open field lines, produces not only electrons but 1000-fold enhancements of 3He/4He and of (Z>50)/O. Alternatively, in “gradual” SEP events, shock waves, driven out from the Sun by coronal mass ejections (CMEs), more democratically sample ion abundances that are even used to measure the coronal abundances of the elements. Gradual events produce by far the highest SEP intensities near Earth. Sometimes residual impulsive suprathermal ions contribute to the seed population for shock acceleration, complicating the abundance picture, but this process has now been modeled theoretically. Initially, impulsive events define a point source on the Sun, selectively filling few magnetic flux tubes, while gradual events show extensive acceleration that can fill half of the inner heliosphere, beginning when the shock reaches ∼2 solar radii. Shock acceleration occurs as ions are scattered back and forth across the shock by resonant Alfvén waves amplified by the accelerated protons themselves as they stream away. These waves also can produce a streaming-limited maximum SEP intensity and plateau region upstream of the shock. Behind the shock lies the large expanse of the “reservoir”, a spatially extensive trapped volume of uniform SEP intensities with invariant energy-spectral shapes where overall intensities decrease with time as the enclosing “magnetic bottle” expands adiabatically. These reservoirs now explain the slow intensity decrease that defines gradual events and was once erroneously attributed solely to slow outward diffusion of the particles. At times the reservoir from one event can contribute its abundances and even its spectra as a seed population for acceleration by a second CME-driven shock wave. Confinement of particles to magnetic flux tubes that thread their source early in events is balanced at late times by slow velocity-dependent migration through a tangled network produced by field-line random walk that is probed by SEPs from both impulsive and gradual events and even by anomalous cosmic rays from the outer heliosphere. As a practical consequence, high-energy protons from gradual SEP events can be a significant radiation hazard to astronauts and equipment in space and to the passengers of high-altitude aircraft flying polar routes.

[1]  S. Kahler,et al.  Prompt solar proton events and coronal mass ejections , 1978 .

[2]  Jie Zhang,et al.  Coronal Shocks of November 1997 Revisited: The Cme–Type II Timing Problem , 2004 .

[3]  W. Feldman,et al.  Interplanetary ions during an energetic storm particle event - The distribution function from solar wind thermal energies to 1.6 MeV , 1981 .

[4]  N. R. Sheeley,et al.  Interplanetary shocks preceded by solar-filament eruptions , 1986 .

[5]  P. Evenson,et al.  On the Estimation of Solar Energetic Particle Injection Timing from Onset Times near Earth , 2005, astro-ph/0503407.

[6]  R. Decker The modulation of low‐energy proton distributions by propagating interplanetary shock waves: A numerical simulation , 1981 .

[7]  D. Lario,et al.  The energetic storm particle event of October 20, 1989 , 2002 .

[8]  M. Temerin,et al.  Enrichment of 3He and Heavy Ions in Impulsive Solar Flares , 1997 .

[9]  D. Reames SOLAR RELEASE TIMES OF ENERGETIC PARTICLES IN GROUND-LEVEL EVENTS , 2009 .

[10]  Edward W. Cliver,et al.  The Unusual Relativistic Solar Proton Events of 1979 August 21 and 1981 May 10 , 2006 .

[11]  D. Reames,et al.  STREAMING-LIMITED INTENSITIES OF SOLAR ENERGETIC PARTICLES ON THE INTENSITY PLATEAU , 2010 .

[12]  D. Forrest,et al.  The Solar Maximum Mission Atlas of Gamma-Ray Flares , 1999 .

[13]  L. Tan,et al.  Ion Anisotropy and High-Energy Variability of Large Solar Particle Events: A Comparative Study , 2008 .

[14]  D. Reames Acceleration of energetic particles by shock waves from large solar flares , 1990 .

[15]  Berndt Klecker,et al.  The mean ionic charge of silicon in 3HE-rich solar flares , 1987 .

[16]  Reuven Ramaty,et al.  Nuclear processes and accelerated particles in solar flares , 1987 .

[17]  J. Anglin The relative abundances and energy spectra of solar-flare-accelerated deuterium, tritium, and helium-3 , 1975 .

[18]  Shea,et al.  Injection onsets of approx. 2GeV protons, approx. 1 MeV electrons, and approx. 100 keV electrons in solar cosmic ray flares , 1982 .

[19]  L. Burlaga,et al.  Merged interaction regions at 1 AU , 2003 .

[20]  M. Temerin,et al.  The production of He-3 and heavy ion enrichment in He-3-rich flares by electromagnetic hydrogen cyclotron waves , 1992 .

[21]  E. Parker,et al.  Stochastic aspects of magnetic lines of force with application to cosmic-ray propagation. , 1969 .

[22]  R. Marsden The sun and the heliosphere in three dimensions : proceedings of the XIXth ESLAB symposium, held in Les Diablerets, Switzerland, 4-6 June 1985 , 1986 .

[23]  A. Tylka,et al.  A COMPARISON OF ELEMENTAL ABUNDANCE RATIOS IN SEP EVENTS IN FAST AND SLOW SOLAR WIND REGIONS , 2009 .

[24]  A. Sandroos,et al.  Diffusive shock acceleration to relativistic energies in the solar corona , 2009 .

[25]  D. Reames,et al.  Focused interplanetary transport of approximately 1 MeV solar energetic protons through self-generated Alfven waves , 1994 .

[26]  D. Baker,et al.  Bidirectional solar wind electron heat flux events , 1987 .

[27]  H. Gail,et al.  Abundances of the elements in the solar system , 2009, 0901.1149.

[28]  S. Krucker,et al.  Solar Energetic Electron Probes of Magnetic Cloud Field Line Lengths (Postprint) , 2012 .

[29]  D. Haggerty,et al.  MAGNETIC FIELD-LINE LENGTHS IN INTERPLANETARY CORONAL MASS EJECTIONS INFERRED FROM ENERGETIC ELECTRON EVENTS , 2011 .

[30]  J. Dwyer,et al.  Heavy-Ion Elemental Abundances in Large Solar Energetic Particle Events and Their Implications for the Seed Population , 2006 .

[31]  E. Cliver,et al.  Solar filament eruptions and energetic particle events , 1986 .

[32]  D. Reames,et al.  Angular Distributions of Fe/O from Wind: New Insight into Solar Energetic Particle Transport , 2002 .

[33]  A. Tylka,et al.  Modeling Shock-accelerated Solar Energetic Particles Coupled to Interplanetary Alfvén Waves , 2003 .

[34]  A. Tylka,et al.  Initial Time Dependence of Abundances in Solar Energetic Particle Events , 2000, The Astrophysical journal.

[35]  J. Giacalone,et al.  EVIDENCE OF CONFINEMENT OF SOLAR-ENERGETIC PARTICLES TO INTERPLANETARY MAGNETIC FIELD LINES , 2011 .

[36]  N. Lal,et al.  A MULTI-SPACECRAFT VIEW OF SOLAR-ENERGETIC-PARTICLE ONSETS IN THE 1977 NOVEMBER 22 EVENT , 2010 .

[37]  M. Shimojo,et al.  Physical Parameters of Solar X-Ray Jets , 2000 .

[38]  E. Cliver,et al.  Electrons and Protons in Solar Energetic Particle Events , 2007 .

[39]  P. Mäkelä,et al.  Properties of Ground Level Enhancement Events and the Associated Solar Eruptions During Solar Cycle 23 , 2012, 1205.0688.

[40]  R. B. Mckibben Azimuthal propagation of low‐energy solar‐flare protons as observed from spacecraft very widely separated in solar azimuth , 1972 .

[41]  B. Vršnak,et al.  Band-splitting of coronal and interplanetary type II bursts - II. Coronal magnetic field and Alfvén velocity , 2002 .

[42]  T. H. Stix Waves in plasmas , 1992 .

[43]  R. Lin,et al.  X-ray and radio properties of solar (He-3) rich events , 1988 .

[44]  A. Vourlidas,et al.  THE LONGITUDINAL PROPERTIES OF A SOLAR ENERGETIC PARTICLE EVENT INVESTIGATED USING MODERN SOLAR IMAGING , 2011 .

[45]  R. MacQueen,et al.  Mass ejections from the Sun: A view from Skylab , 1974 .

[46]  J. Lovell,et al.  An extended analysis of the September 1989 cosmic ray ground level enhancement , 1998 .

[47]  R. Ramaty,et al.  Determination of the Abundances of Subcoronal 4He and of Solar Flare-accelerated 3He and 4He from Gamma-Ray Spectroscopy , 1999 .

[48]  B. Tsurutani,et al.  The cause of high-intensity long-duration continuous AE activity (HILDCAAs): Interplanetary Alfvén wave trains , 1987 .

[49]  D. Reames,et al.  Streaming-limited Intensities of Solar Energetic Particles , 1998 .

[50]  R. Vogt,et al.  ENRICHMENT OF HEAVY NUCLEI IN 3HE-RICH FLARES , 1975 .

[51]  T. T. von Rosenvinge,et al.  Energy Spectra, Composition, and Other Properties of Ground-Level Events During Solar Cycle 23 , 2012 .

[52]  S. Kahler,et al.  Invariance of Charged Particle Time Profiles at Late Stages of SCR Events from the Data of Multisatellite Observations , 2003 .

[53]  T. Cline,et al.  Relativistic electrons from solar flares , 1968 .

[54]  D. Rust,et al.  An emerging flux model for solar flares , 1977 .

[55]  R. Lin,et al.  Characteristics of solar coronal source regions producing 3He-rich particle events , 1987 .

[56]  Hugh S. Hudson,et al.  High-Energy Particles in Solar Flares , 1995 .

[57]  W. F. Dietrich,et al.  The mean ionic charge state of solar energetic Fe ions above 200 MeV per nucleon , 1995 .

[58]  D. Reames PARTICLE ENERGY SPECTRA AT TRAVELING INTERPLANETARY SHOCK WAVES , 2012 .

[59]  E. Cliver,et al.  SIZE DISTRIBUTIONS OF SOLAR FLARES AND SOLAR ENERGETIC PARTICLE EVENTS , 2012 .

[60]  D. Hovestadt,et al.  Temporal variations of nucleonic abundances in solar flare energetic particle events. II - Evidence for large-scale shock acceleration , 1984 .

[61]  G. Gloeckler,et al.  Energetic particle diffusion coefficients upstream of quasi-parallel interplanetary shocks , 1989 .

[62]  R. Mewaldt,et al.  A Twin-CME Scenario for Ground Level Enhancement Events , 2012 .

[63]  R. Lin The emission and propagation of ∼40keV solar flare electrons , 1970 .

[64]  Frank C. Jones,et al.  The plasma physics of shock acceleration , 1989 .

[65]  J. Geiss,et al.  Composition of quasi‐stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer , 2000 .

[66]  W. F. Dietrich The differential energy spectra of solar-flare H-1, He-3, and He-4. , 1973 .

[67]  O. Malandraki,et al.  USE OF INCIDENT AND REFLECTED SOLAR PARTICLE BEAMS TO TRACE THE TOPOLOGY OF MAGNETIC CLOUDS , 2012 .

[68]  S. M. Krimigis,et al.  Evidence for a Suprathermal Seed Population of Heavy Ions Accelerated by Interplanetary Shocks near 1 AU , 2003 .

[69]  J. D. Bohlin,et al.  Coronal changes associated with a disappearing filament , 1975 .

[70]  L. Fisk He-3-rich flares - A possible explanation , 1978 .

[71]  D. Ruffolo,et al.  DRIFT ORBITS OF ENERGETIC PARTICLES IN AN INTERPLANETARY MAGNETIC FLUX ROPE , 2009 .

[72]  R. Murphy,et al.  Solar Atmospheric Abundances and Energy Content in Flare-accelerated Ions from Gamma-Ray Spectroscopy , 1995 .

[73]  T. L. Cline,et al.  Explorer 12 observations of solar cosmic rays and energetic storm particles after the solar flare of September 28, 1961 , 1962 .

[74]  A. Tylka New insights on solar energetic particles from Wind and ACE , 2001 .

[75]  J. Simpson,et al.  The Relative Abundances and Energy Spectra of ^{3}He and ^{4}He from Solar Flares , 1970 .

[76]  W. F. Dietrich,et al.  Evidence for Remnant Flare Suprathermals in the Source Population of Solar Energetic Particles in the 2000 Bastille Day Event , 2001 .

[77]  J. Sokoloski,et al.  X-RAY AND ULTRAVIOLET EMISSION FROM THE RECURRENT NOVA RS OPHIUCHI IN QUIESCENCE: SIGNATURES OF ACCRETION AND SHOCKED GAS , 2011, 1105.2569.

[78]  Bernd Freytag,et al.  Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere , 2010, 1003.1190.

[79]  J. Ryan Long-Duration Solar Gamma-Ray Flares , 2000 .

[80]  S. Krucker,et al.  Intensity variation of large solar energetic particle events associated with coronal mass ejections , 2004 .

[81]  Gang Li,et al.  Particle acceleration at perpendicular shock waves: Model and observations , 2005 .

[82]  D. Melrose,et al.  Diffusive Shock Acceleration by Multiple Shocks , 1993, Publications of the Astronomical Society of Australia.

[83]  C. Fichtel,et al.  HEAVY NUCLEI IN SOLAR COSMIC RAYS , 1961 .

[84]  N. Sheeley,et al.  Coronal Mass Ejections Associated with Impulsive Solar Energetic Particle Events , 2001 .

[85]  R. Leske,et al.  STEREO OBSERVATIONS OF ENERGETIC NEUTRAL HYDROGEN ATOMS DURING THE 2006 DECEMBER 5 SOLAR FLARE , 2009 .

[86]  D. Reames Solar Energetic Particles: Sampling Coronal Abundances , 1998 .

[87]  S. Kahler The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: Effects of ambient particle intensities and energy spectra , 2001 .

[88]  N. Gopalswamy,et al.  SOLAR SOURCES OF IMPULSIVE SOLAR ENERGETIC PARTICLE EVENTS AND THEIR MAGNETIC FIELD CONNECTION TO THE EARTH , 2006 .

[89]  S. Kane,et al.  Solar flare nuclear gamma-rays and interplanetary proton events , 1989 .

[90]  M. Shea,et al.  Solar cosmic ray events for the period 1561–1994: 2. The Gleissberg periodicity , 2001 .

[91]  R. C. Carrington Description of a Singular Appearance seen in the Sun on September 1, 1859 , 1859 .

[92]  W. Rice,et al.  Particle acceleration and coronal mass ejection driven shocks: A theoretical model , 2000 .

[93]  Olga Verkhoglyadova,et al.  Particle Acceleration at Interplanetary Shocks , 2007 .

[94]  M. L. Kaiser,et al.  Near‐Sun and near‐Earth manifestations of solar eruptions , 2001 .

[95]  N. Gopalswamy,et al.  Interacting Coronal Mass Ejections and Solar Energetic Particles , 2002 .

[96]  Donald V. Reames,et al.  Magnetic Topology of Impulsive and Gradual Solar Energetic Particle Events , 2002 .

[97]  S. Kahler Solar Flares and Coronal Mass Ejections , 1992 .

[98]  D. Reames SOLAR ENERGETIC-PARTICLE RELEASE TIMES IN HISTORIC GROUND-LEVEL EVENTS , 2009 .

[99]  R. Müller-mellin,et al.  Super-Events in the Inner Solar System and their Relation to the Solar Cycle , 1986 .

[100]  A. Tylka,et al.  Spatial Distribution of Solar Energetic Particles in the Inner Heliosphere , 2013 .

[101]  R. Vainio,et al.  Heavy-ion acceleration and self-generated waves in coronal shocks , 2011, 1303.4340.

[102]  Rami Vainio,et al.  Simulation Results for Heavy Ion Spectral Variability in Large Gradual Solar Energetic Particle Events , 2007 .

[103]  Mukul R. Kundu Solar Radio Astronomy , 1965 .

[104]  J. Drake,et al.  THE ACCELERATION OF IONS IN SOLAR FLARES DURING MAGNETIC RECONNECTION , 2011, 1108.5750.

[105]  E. Möbius,et al.  Ionic charge state measurements in solar energetic particle events , 2001 .

[106]  D. Reames Remote Sensing of Magnetic-Cloud Topology , 2010 .

[107]  S. M. Krimigis,et al.  Abundances of Heavy and Ultraheavy Ions in 3He-rich Solar Flares , 2004 .

[108]  Lindsay Glesener,et al.  RADIO IMAGING OF SHOCK-ACCELERATED ELECTRONS ASSOCIATED WITH AN ERUPTING PLASMOID ON 2010 NOVEMBER 3 , 2012 .

[109]  B. Klecker,et al.  The heavy-ion compositional signature in He-3-rich solar particle events , 1986 .

[110]  R. Stone,et al.  The identification of solar He-3-rich events and the study of particle acceleration at the sun , 1986 .

[111]  R. Mewaldt,et al.  Two components in major solar particle events , 2003 .

[112]  A. Szabo,et al.  Interplanetary fast shocks and associated drivers observed through the 23rd solar minimum by Wind over its first 2.5 years , 2000 .

[113]  D. Reames Coronal abundances determined from energetic particles , 1995 .

[114]  F. Mariani,et al.  Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP-8 observations , 1981 .

[115]  J. Meyer,et al.  Energetic-particle abundances in impulsive solar flare events , 1994 .

[116]  Reuven Ramaty,et al.  Shock acceleration of electrons and ions in solar flares , 1985 .

[117]  J. Barth,et al.  Model for Cumulative Solar Heavy Ion Energy and Linear Energy Transfer Spectra , 2007, IEEE Transactions on Nuclear Science.

[118]  J. Dwyer,et al.  Elemental Fractionation in Small Solar Energetic Particle Events , 2003 .

[119]  M. Acuna,et al.  Spectral analysis of magnetohydrodynamic fluctuations near interplanetary shocks , 1984 .

[120]  Donald V. Reames,et al.  Bimodal abundances in the energetic particles of solar and interplanetary origin , 1988 .

[121]  R. Lin Non-relativistic solar electrons , 1974 .

[122]  S. Krimigis,et al.  Impulsive emission of ∼40‐kev electrons from the Sun , 1965 .

[123]  Markus J. Aschwanden,et al.  Particle acceleration and kinematics in solar flares – A Synthesis of Recent Observations and Theoretical Concepts (Invited Review) , 2002 .

[124]  R. Leske,et al.  Solar Isotopic Composition as Determined Using Solar Energetic Particles , 2007 .

[125]  J. Luhmann,et al.  RELATIONSHIP BETWEEN A CORONAL MASS EJECTION-DRIVEN SHOCK AND A CORONAL METRIC TYPE II BURST , 2009 .

[126]  Reuven Ramaty,et al.  Solar abundances from gamma-ray spectroscopy : comparisons with energetic particle, photospheric, and coronal abundances , 1991 .

[127]  T. T. von Rosenvinge,et al.  The role of interplanetary shocks in the longitude distribution of solar energetic particles , 1988 .

[128]  D. Reames Abundances of Trans-Iron Elements in Solar Energetic Particle Events , 2000 .

[129]  H. Breneman,et al.  SOLAR CORONAL AND PHOTOSPHERIC ABUNDANCES FROM SOLAR ENERGETIC PARTICLE MEASUREMENTS , 1985 .

[130]  W. F. Dietrich,et al.  A Comparative Study of Ion Characteristics in the Large Gradual Solar Energetic Particle Events of 2002 April 21 and 2002 August 24 , 2006 .

[131]  R. Gold,et al.  Low-energy solar electrons and ions observed at Ulysses February-April, 1991 - The inner heliosphere as a particle reservoir , 1992 .

[132]  X. Shao,et al.  WHAT CAUSES SCATTER-FREE TRANSPORT OF NON-RELATIVISTIC SOLAR ELECTRONS? , 2011 .

[133]  J. Mazur,et al.  Charge State Measurements of Solar Energetic Particles Observed with SAMPEX , 1995 .

[134]  Y.-M. Wang,et al.  Coronal Holes, Jets, and the Origin of 3He-rich Particle Events , 2006 .

[135]  R. Marsden,et al.  Initial Fe/O Enhancements in Large, Gradual, Solar Energetic Particle Events: Observations from Wind and Ulysses , 2013 .

[136]  K. Papadopoulos,et al.  EVIDENCE FOR THE OSCILLATING TWO STREAM INSTABILITY AND SPATIAL COLLAPSE OF LANGMUIR WAVES IN A SOLAR TYPE III RADIO BURST , 2012, The Astrophysical Journal.

[137]  S. M. Krimigis,et al.  Spectral Properties of He and Heavy Ions in 3He-rich Solar Flares , 2002 .

[138]  G. S. Vaiana,et al.  A survey of soft X-ray limb flare images: the relation between their structure in the corona and other physical parameters. , 1977 .

[139]  Martin A. Lee Particle Acceleration and Transport at CME‐Driven Shocks , 2013 .

[140]  E. Cliver,et al.  Coronal Shocks and Solar Energetic Proton Events , 2004 .

[141]  S. Runcorn,et al.  Space research XIII , 1973 .

[142]  Jack E. Dibb,et al.  The Carrington event not observed in most ice core nitrate records , 2012 .

[143]  A. Tylka,et al.  Solar energetic particles: Shock acceleration and transport through self-amplified waves , 2012 .

[144]  S. Kahler,et al.  Spatial and Temporal Invariance in the Spectra of Energetic Particles in Gradual Solar Events , 1997 .

[145]  Russell A. Howard,et al.  On the origin of solar metric type II bursts , 1999 .

[146]  E. Quataert,et al.  A MAGNETIC RECONNECTION MECHANISM FOR ION ACCELERATION AND ABUNDANCE ENHANCEMENTS IN IMPULSIVE FLARES , 2009 .

[147]  T. T. von Rosenvinge,et al.  Solar He-3-rich events and nonrelativistic electron events - A new association , 1985 .

[148]  C. Farrugia,et al.  Exploring the global shock scenario at multiple points between sun and earth: The solar transients launched on January 1 and September 23, 1978 , 2009 .

[149]  A. Fludra,et al.  The absolute coronal abundances of sulfur, calcium, and iron from Yohkoh-BCS flare spectra , 1999 .

[150]  J. Barth,et al.  Space, atmospheric, and terrestrial radiation environments , 2003 .

[151]  I. Palmer Transport coefficients of low‐energy cosmic rays in interplanetary space , 1982 .

[152]  K. G. McCracken,et al.  Solar cosmic ray events for the period 1561–1994: 1. Identification in polar ice, 1561–1950 , 2001 .

[153]  D. Lario,et al.  Major Solar Energetic Particle Events of Solar Cycles 22 and 23: Intensities Close to the Streaming Limit , 2009 .

[154]  Russell A. Howard,et al.  The solar cycle variation of coronal mass ejections and the solar wind mass flux , 1994 .

[155]  R. Vainio,et al.  Monte Carlo Simulations of Coronal Diffusive Shock Acceleration in Self-generated Turbulence , 2007 .

[156]  D. Soderblom,et al.  Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records , 2012, 1206.4889.

[157]  J. Gosling The solar flare myth , 1993 .

[158]  Linghua Wang,et al.  OBSERVATIONAL EVIDENCE ON THE PRESENCE OF AN OUTER REFLECTING BOUNDARY IN SOLAR ENERGETIC PARTICLE EVENTS , 2009 .

[159]  B. Klecker,et al.  Impulsive acceleration and scatter-free transport of about 1 MeV per nucleon ions in (He-3)-rich solar particle events , 1989 .

[160]  A. Bell The acceleration of cosmic rays in shock fronts – I , 1978 .

[161]  F. Cucinotta,et al.  Space radiation risk limits and Earth‐Moon‐Mars environmental models , 2010 .

[162]  Stochastic Acceleration of 3He and 4He in Solar Flares by Parallel-propagating Plasma Waves: General Results , 2005, astro-ph/0502341.

[163]  R. Mewaldt,et al.  Solar Elemental Composition Based on Studies of Solar Energetic Particles , 2007 .

[164]  S. Kahler,et al.  Solar Sources of Heliospheric Energetic Electron Events—Shocks or Flares? , 2007 .

[165]  B. Heber,et al.  A New Trend in Forecasting Solar Radiation Hazards , 2009 .

[166]  Martin A. Lee Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks , 1983 .

[167]  E. Cliver,et al.  A Comparison of Ground Level Event e/p and Fe/O Ratios with Associated Solar Flare and CME Characteristics , 2012 .

[168]  S. Basu,et al.  COMPOSITION OF THE SOLAR CORONA, SOLAR WIND, AND SOLAR ENERGETIC PARTICLES , 2012 .

[169]  D. Reames,et al.  Shock Acceleration of Solar Energetic Protons: The First 10 Minutes , 2008 .

[170]  Mazur,et al.  Interplanetary Magnetic Field Line Mixing Deduced from Impulsive Solar Flare Particles , 2000, The Astrophysical journal.

[171]  J. Meyer The baseline composition of solar energetic particles , 1985 .

[172]  D. Reames,et al.  Heavy-Element Abundances in Solar Energetic Particle Events , 2004 .

[173]  A. Klassen,et al.  Formation and development of shock waves in the solar corona and the near-Sun interplanetary space , 2003 .

[174]  V. Balasubrahmanyan,et al.  Solar particle events with anomalously large relative abundance of He-3 , 1975 .

[175]  S. M. Krimigis,et al.  Spectral Properties of Heavy Ions Associated with the Passage of Interplanetary Shocks at 1 AU , 2004 .

[176]  V. Petrosian,et al.  Stochastic Acceleration of 3He and 4He by Parallel Propagating Plasma Waves , 2004, astro-ph/0403007.

[177]  J. Heerikhuisen Preface:Physics of the Heliosphere: A 10 Year Retrospective , 2012 .

[178]  Russell A. Howard,et al.  Associations between coronal mass ejections and solar energetic proton events , 1983 .

[179]  R. Vainio,et al.  Emission of Type II Radio Bursts – Single-Beam Versus Two-Beam Scenario , 2012, 1206.5712.

[180]  J. Gosling,et al.  Counterstreaming electrons in magnetic clouds , 2000 .

[181]  R. Lin The emission and propagation of ∼ 40keV solar flare electrons , 1970 .

[182]  D. Lario,et al.  Major solar energetic particle events of solar cycles 22 and 23: Intensities above the streaming limit , 2008 .

[183]  S. Forbush,et al.  Three Unusual Cosmic-Ray Increases Possibly Due to Charged Particles from the Sun , 1946 .

[184]  S. Kahler Injection profiles of solar energetic particles as functions of coronal mass ejection heights , 1994 .

[185]  James A. Miller Particle Acceleration in Impulsive Solar Flares , 1998 .

[186]  J. Geiss,et al.  Interpretation of3He abundance variations in the solar wind , 1984 .

[187]  Donald V. Reames,et al.  Energetic particles from impulsive solar flares , 1990 .

[188]  E. Möbius,et al.  Energy-dependent Charge States and Their Connection with Ion Abundances in Impulsive Solar Energetic Particle Events , 2008 .

[189]  A. Tylka,et al.  A Model for Spectral and Compositional Variability at High Energies in Large, Gradual Solar Particle Events , 2006 .

[190]  W. F. Dietrich,et al.  Shock Geometry, Seed Populations, and the Origin of Variable Elemental Composition at High Energies in Large Gradual Solar Particle Events , 2005 .

[191]  J. Mazur,et al.  Energy Spectra of Ions Accelerated in Impulsive and Gradual Solar Events , 1997 .

[192]  Rami Vainio,et al.  Simulations of coronal shock acceleration in self-generated turbulence , 2008 .

[193]  Mazur,et al.  3He Enhancements in Large Solar Energetic Particle Events , 1999, The Astrophysical journal.

[194]  U. Feldman,et al.  Neon and Oxygen Absolute Abundances in the Solar Corona , 2007 .

[195]  R. Mewaldt,et al.  Measurements of the Ionic Charge States of Solar Energetic Particles Using the Geomagnetic Field , 1995 .

[196]  A. Tylka,et al.  ANOMALOUS COSMIC RAYS AS PROBES OF MAGNETIC CLOUDS , 2009 .

[197]  Martin A. Lee Coupled Hydromagnetic Wave Excitation and Ion Acceleration at an Evolving Coronal/Interplanetary Shock , 2005 .

[198]  L. Burlaga,et al.  Magnetic clouds, geomagnetic disturbances, and cosmic ray decreases , 1988 .

[199]  L. Barbier,et al.  The Spatial Distribution of Particles Accelerated by Coronal Mass Ejection--driven Shocks , 1996 .

[200]  G. Petrie,et al.  ABRUPT CHANGES OF THE PHOTOSPHERIC MAGNETIC FIELD IN ACTIVE REGIONS AND THE IMPULSIVE PHASE OF SOLAR FLARES , 2012 .

[201]  W. T. Vestrand,et al.  Evidence for a spatially extended component of gamma rays from solar flares , 1993 .

[202]  J. Geiss,et al.  The Composition of the Solar Wind in Polar Coronal Holes , 2007 .