Functional Neuroanatomy of the Human Visual System: A Review of Functional MRI Studies

[1]  K. Jellinger The Neurology of Eye Movements 4th edn. , 2009 .

[2]  Alex R. Wade,et al.  Two-dimensional mapping of the central and parafoveal visual field to human visual cortex. , 2007, Journal of neurophysiology.

[3]  David J Logan,et al.  Cortical area MSTd combines visual cues to represent 3-D self-movement. , 2006, Cerebral cortex.

[4]  Mark W. Greenlee,et al.  Cortical activation during memory-guided saccades , 2006, Neuroreport.

[5]  Ignacio Vallines,et al.  Saccadic Suppression of Retinotopically Localized Blood Oxygen Level-Dependent Responses in Human Primary Visual Area V1 , 2006, The Journal of Neuroscience.

[6]  D. Heeger,et al.  Sustained Activity in Topographic Areas of Human Posterior Parietal Cortex during Memory-Guided Saccades , 2006, The Journal of Neuroscience.

[7]  A. Cavanna,et al.  The precuneus: a review of its functional anatomy and behavioural correlates. , 2006, Brain : a journal of neurology.

[8]  A. T. Smith,et al.  Sensitivity to optic flow in human cortical areas MT and MST , 2006, The European journal of neuroscience.

[9]  Stephen L Macknik,et al.  Visibility, visual awareness, and visual masking of simple unattended targets are confined to areas in the occipital cortex beyond human V1/V2. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. Deichmann,et al.  Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus , 2005, Nature.

[11]  Justin L. Gardner,et al.  Contrast Adaptation and Representation in Human Early Visual Cortex , 2005, Neuron.

[12]  Linda Henriksson,et al.  Multifocal fMRI mapping of visual cortical areas , 2005, NeuroImage.

[13]  Brian A Wandell,et al.  Visual field map clusters in human cortex , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[14]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[15]  D. Heeger,et al.  Topographic organization for delayed saccades in human posterior parietal cortex. , 2005, Journal of neurophysiology.

[16]  T. Pasternak,et al.  Working memory in primate sensory systems , 2005, Nature Reviews Neuroscience.

[17]  G. Rees,et al.  Saccades Differentially Modulate Human LGN and V1 Responses in the Presence and Absence of Visual Stimulation , 2005, Current Biology.

[18]  David C. Van Essen,et al.  Surface-based approaches to spatial localization and registration in primate cerebral cortex , 2004, NeuroImage.

[19]  Amiram Grinvald,et al.  VSDI: a new era in functional imaging of cortical dynamics , 2004, Nature Reviews Neuroscience.

[20]  Marlene C. Richter,et al.  Retinotopic Organization and Functional Subdivisions of the Human Lateral Geniculate Nucleus: A High-Resolution Functional Magnetic Resonance Imaging Study , 2004, The Journal of Neuroscience.

[21]  Stephen V. David,et al.  Parametric reverse correlation reveals spatial linearity of retinotopic human V1 BOLD response , 2004, NeuroImage.

[22]  Mark W Greenlee,et al.  BOLD response in dorsal areas varies with relative disparity level , 2004, Neuroreport.

[23]  D. Hubel,et al.  The role of fixational eye movements in visual perception , 2004, Nature Reviews Neuroscience.

[24]  Ravi S. Menon,et al.  Comparison of memory- and visually guided saccades using event-related fMRI. , 2004, Journal of neurophysiology.

[25]  M. Pihlajamäki,et al.  Visual Processing of Coherent Rotation in the Central Visual Field: An fMRI Study , 2003, Perception.

[26]  G. Boynton,et al.  Orientation-Specific Adaptation in Human Visual Cortex , 2003, The Journal of Neuroscience.

[27]  S. Kosslyn,et al.  When is early visual cortex activated during visual mental imagery? , 2003, Psychological bulletin.

[28]  Doris Y. Tsao,et al.  Stereopsis Activates V3A and Caudal Intraparietal Areas in Macaques and Humans , 2003, Neuron.

[29]  S. Zeki,et al.  The processing of kinetic contours in the brain. , 2003, Cerebral cortex.

[30]  Ravi S. Menon,et al.  Human fMRI evidence for the neural correlates of preparatory set , 2002, Nature Neuroscience.

[31]  Chantal Delon-Martin,et al.  fMRI Retinotopic Mapping—Step by Step , 2002, NeuroImage.

[32]  N. Logothetis,et al.  Visual Areas in Macaque Cortex Measured Using Functional Magnetic Resonance Imaging , 2002, The Journal of Neuroscience.

[33]  Brian A. Wandell,et al.  Chromatic Light Adaptation Measured using Functional Magnetic Resonance Imaging , 2002, The Journal of Neuroscience.

[34]  Alex R. Wade,et al.  Functional measurements of human ventral occipital cortex: retinotopy and colour. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[35]  D. Heeger,et al.  Retinotopy and Functional Subdivision of Human Areas MT and MST , 2002, The Journal of Neuroscience.

[36]  J. Hennig,et al.  Functional magnetic resonance imaging evidence for binocular interactions in human visual cortex , 2002, Experimental Brain Research.

[37]  Ravi S. Menon,et al.  Brief visual stimulation allows mapping of ocular dominance in visual cortex using fMRI , 2001, Human brain mapping.

[38]  T. Mergner,et al.  Relationship between saccadic eye movements and cortical activity as measured by fMRI: quantitative and qualitative aspects , 2001, Experimental Brain Research.

[39]  Keiji Tanaka,et al.  Human Ocular Dominance Columns as Revealed by High-Field Functional Magnetic Resonance Imaging , 2001, Neuron.

[40]  David J. Fleet,et al.  Human cortical activity correlates with stereoscopic depth perception. , 2001, Journal of neurophysiology.

[41]  Leslie G. Ungerleider,et al.  Modulation of sensory suppression: implications for receptive field sizes in the human visual cortex. , 2001, Journal of neurophysiology.

[42]  R. P. Maguire,et al.  Event-related fMRI responses in the human frontal eye fields in a randomized pro- and antisaccade task , 2001, NeuroImage.

[43]  Alex R. Wade,et al.  Visual areas and spatial summation in human visual cortex , 2001, Vision Research.

[44]  R. Tootell,et al.  Where is 'dorsal V4' in human visual cortex? Retinotopic, topographic and functional evidence. , 2001, Cerebral cortex.

[45]  M. Greenlee,et al.  Cortical activation evoked by visual mental imagery as measured by fMRI , 2000, Neuroreport.

[46]  D. Burr,et al.  A cortical area that responds specifically to optic flow, revealed by fMRI , 2000, Nature Neuroscience.

[47]  A. T. Smith,et al.  Spatiotemporal Frequency and Direction Sensitivities of Human Visual Areas Measured Using fMRI , 2000, NeuroImage.

[48]  M. Greenlee,et al.  Brain activation during dichoptic presentation of optic flow stimuli , 2000, Experimental Brain Research.

[49]  R. Blake,et al.  Brain Areas Involved in Perception of Biological Motion , 2000, Journal of Cognitive Neuroscience.

[50]  Alan C. Evans,et al.  A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning. , 2000, Cerebral cortex.

[51]  S. Zeki,et al.  The architecture of the colour centre in the human visual brain: new results and a review * , 2000, The European journal of neuroscience.

[52]  D. Heeger,et al.  Motion Opponency in Visual Cortex , 1999, The Journal of Neuroscience.

[53]  S Zeki,et al.  The clinical and functional measurement of cortical (in)activity in the visual brain, with special reference to the two subdivisions (V4 and V4 alpha) of the human colour centre. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[54]  S. Kosslyn,et al.  The role of area 17 in visual imagery: convergent evidence from PET and rTMS. , 1999, Science.

[55]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[56]  Ravi S. Menon,et al.  Submillimeter functional localization in human striate cortex using BOLD contrast at 4 Tesla: Implications for the vascular point‐spread function , 1999, Magnetic resonance in medicine.

[57]  A. Dale,et al.  The Retinotopy of Visual Spatial Attention , 1998, Neuron.

[58]  P. Cavanagh,et al.  Retinotopy and color sensitivity in human visual cortical area V8 , 1998, Nature Neuroscience.

[59]  J. Hennig,et al.  The Processing of First- and Second-Order Motion in Human Visual Cortex Assessed by Functional Magnetic Resonance Imaging (fMRI) , 1998, The Journal of Neuroscience.

[60]  D. V. van Essen,et al.  Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[61]  A. Dale,et al.  Functional analysis of primary visual cortex (V1) in humans. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[62]  A. Grinvald,et al.  Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[63]  G. Orban,et al.  The kinetic occipital (KO) region in man: an fMRI study. , 1997, Cerebral cortex.

[64]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[65]  D. Purves,et al.  Correlated Size Variations in Human Visual Cortex, Lateral Geniculate Nucleus, and Optic Tract , 1997, The Journal of Neuroscience.

[66]  G. Orban,et al.  The kinetic occipital region in human visual cortex. , 1997, Cerebral cortex.

[67]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[68]  A. Dale,et al.  New images from human visual cortex , 1996, Trends in Neurosciences.

[69]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[70]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[71]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[72]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[73]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[74]  J. Horton,et al.  The representation of the visual field in human striate cortex. A revision of the classic Holmes map. , 1991, Archives of ophthalmology.

[75]  F. Heitger,et al.  The functional role of contrast adaptation , 1988, Vision Research.

[76]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[77]  A. Paivio Mental Representations: A Dual Coding Approach , 1986 .

[78]  R. Leigh,et al.  The neurology of eye movements , 1984 .

[79]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[80]  M. Greenlee,et al.  Behavioral and Brain Functions , 2007 .

[81]  G. Rees,et al.  Neuroimaging: Decoding mental states from brain activity in humans , 2006, Nature Reviews Neuroscience.

[82]  M. Greenlee,et al.  Neural correlates of the perception of coherent motion-in-depth and self-motion as measured by fMRI , 2006 .

[83]  Sabine Kastner,et al.  Functional imaging of the human lateral geniculate nucleus and pulvinar. , 2004, Journal of neurophysiology.

[84]  D. V. van Essen,et al.  Surface-based approaches to spatial localization and registration in primate cerebral cortex. , 2004, NeuroImage.

[85]  M. Goldberg,et al.  The role of the parietal cortex in the neural processing of saccadic eye movements. , 2003, Advances in neurology.

[86]  A. Parker,et al.  Cortical mechanisms of binocular stereoscopic vision. , 2001, Progress in brain research.