The data processing pipeline for the MUSE instrument
暂无分享,去创建一个
Roland Bacon | Andreas Kelz | Ole Streicher | Martin M. Roth | Johan Richard | Ralf Palsa | Simon Conseil | Peter M. Weilbacher | Tanya Urrutia | Lutz Wisotzki | Bernd Husemann | Aur'elien Jarno | Arlette P'econtal-Rousset | Fernando Selman | Joel Vernet Leibniz-Institut fur Astrophysik Potsdam | ESO Garching CRAL | Gemini | MPIA | ESO Santiago | L. Wisotzki | R. Bacon | J. Richard | S. Conseil | O. Streicher | Mpia | A. Kelz | M. Roth | P. Weilbacher | T. Urrutia | F. Selman | B. Husemann | E. Santiago | A. Jarno | R. Palsa | Arlette P'econtal-Rousset | J. G. A. I. Potsdam | Eso Garching Cral
[1] B. Edĺen. The Refractive Index of Air , 1966 .
[2] J. Owens,et al. Optical refractive index of air: dependence on pressure, temperature and composition. , 1967, Applied optics.
[3] A. V. Filippenko,et al. THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .
[4] P. Stetson. DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .
[5] Robert J. Renka,et al. Multivariate interpolation of large sets of scattered data , 1988, TOMS.
[6] K. P. Birch,et al. An Updated Edln Equation for the Refractive Index of Air , 1993 .
[7] E. Greisen,et al. Representations of celestial coordinates in FITS , 2002, astro-ph/0207413.
[8] P. Ciddor. Refractive index of air: new equations for the visible and near infrared. , 1996, Applied optics.
[9] Francisco Prada,et al. New parametrizations of non-Gaussian line-of-sight velocity distribution , 1996 .
[10] W. C. Martin,et al. Atomic Spectra Database , 1999 .
[11] R. Davies,et al. The SAURON project – I. The panoramic integral-field spectrograph , 2001, astro-ph/0103451.
[12] P. Dokkum. Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.
[13] I. Hook,et al. Integral Field Spectroscopy with the Gemini Multiobject Spectrograph.I. Design, Construction, and Testing , 2002 .
[14] C. Goessl,et al. Image reduction pipeline for the detection of variable sources in highly crowded fields , 2001, astro-ph/0110704.
[15] Peter J. Quinn,et al. Observatory Operations to Optimize Scientific Return III , 2002 .
[16] D. Kelson. Optimal Techniques in Two‐dimensional Spectroscopy: Background Subtraction for the 21st Century , 2003, astro-ph/0303507.
[17] K. Jahnke,et al. Integral-field spectrophotometry of the quadruple QSO HE 0435 1223: Evidence for microlensing , 2003, astro-ph/0307147.
[18] A. Moorwood,et al. Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .
[19] David Dunlap Observatory. A Fast Algorithm for Cosmic Rays Removal from Single Images , 2003 .
[20] J. R. Walsh. Euro3D Science Conference , 2004 .
[21] Arlette Pécontal-Rousset,et al. The Euro3D data format: A common FITS data format for integral field spectrographs , 2004 .
[22] W. Pych. A Fast Algorithm for Cosmic‐Ray Removal from Single Images , 2003, astro-ph/0311290.
[23] H Germany,et al. PMAS: The Potsdam Multi‐Aperture Spectrophotometer. I. Design, Manufacture, and Performance , 2005, astro-ph/0502581.
[24] A. Monreal-Ibero,et al. INTEGRAL FIELD SPECTROSCOPY OF FAINT HALOS OF PLANETARY NEBULAE , 2005 .
[25] A. Mazure,et al. The VIMOS Integral Field Unit: Data‐Reduction Methods and Quality Assessment , 2005, astro-ph/0509454.
[26] Caroline van Breukelen,et al. The luminosity function of Lyα emitters at 2.3 z , 2005, astro-ph/0502409.
[27] Steven G. Johnson,et al. The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.
[28] R.I.Davies. A method to remove residual OH emission from near infrared spectra , 2006, astro-ph/0612257.
[29] Steve B. Howell,et al. Handbook of CCD Astronomy: Contents , 2006 .
[30] Molefe Mokoene,et al. The Messenger , 1995, Outrageous Fortune.
[31] Martin Roth. The Euro3D research training network , 2006 .
[32] David L. Huestis,et al. High‐resolution terrestrial nightglow emission line atlas from UVES/VLT: Positions, intensities, and identifications for 2808 lines at 314–1043 nm , 2006 .
[33] R. Davies,et al. A method to remove residual OH emission from near-infrared spectra , 2007 .
[34] Martin M. Roth,et al. Spatially resolved spectroscopy of planetary nebulae and their halos - I. Five galactic disk objects , 2008, 0802.3813.
[35] William D. Pence,et al. CFITSIO: A FITS File Subroutine Library , 2010 .
[36] P. Weilbacher,et al. P3D: a general data-reduction tool for fiber-fed integral-field spectrographs , 2010, 1002.4406.
[37] M. R. Calabretta. Wcslib and Pgsbox , 2011 .
[38] G. Bruce Berriman,et al. Astrophysics Source Code Library , 2012, ArXiv.
[39] C. Sandin,et al. PyCosmic: a robust method to detect cosmics in CALIFA and other fiber-fed integral-field spectroscopy datasets , 2012, 1208.1696.
[40] Jeremy S. Heyl. A fast matching algorithm for sheared stellar samples: k-d match , 2013 .
[41] W. Freudling,et al. Automated data reduction workflows for astronomy , 2013, 1311.5411.
[42] Martin M. Roth,et al. Resolving stellar populations with crowded field 3D spectroscopy , 2012, 1211.0445.
[43] W. Kausch,et al. Skycorr: A general tool for spectroscopic sky subtraction , 2014, 1405.3679.
[44] P. Weilbacher,et al. The MUSE 3D view of the Hubble Deep Field South , 2014, 1411.7667.
[45] Benoit Epinat,et al. Unveiling the counter-rotating nature of the kinematically distinct core in NGC 5813 with MUSE , 2015, 1505.06226.
[46] W. Kausch,et al. Molecfit: A general tool for telluric absorption correction - I. Method and application to ESO instruments , 2015, 1501.07239.
[47] E. Popow,et al. PEPSI: The high-resolution ichelle spectrograph and polarimeter for the Large Binocular Telescope , 2015, 1505.06492.
[48] S. Ramsay,et al. The Pillars of Creation revisited with MUSE: gas kinematics and high-mass stellar feedback traced by optical spectroscopy , 2015, 1504.03323.
[49] J. Fensch,et al. Ionization processes in a local analogue of distant clumpy galaxies: VLT MUSE IFU spectroscopy and FORS deep images of the TDG NGC 5291N , 2015, 1509.08873.
[50] Andreas Kelz,et al. A MUSE map of the central Orion Nebula (M 42) , 2015, 1507.00006.
[51] European Southern Observatory,et al. Towards DIB mapping in galaxies beyond 100 Mpc. A radial profile of the $\lambda$5780.5 diffuse interstellar band in AM 1353-272 B , 2015, 1502.06548.
[52] P. Weilbacher,et al. MUSE observations of the lensing cluster SMACSJ2031.8-4036: new constraints on the mass distribution in the cluster core. , 2014, 1409.2488.
[53] E. Emsellem,et al. Extended Lyman α haloes around individual high-redshift galaxies revealed by MUSE , 2015, 1509.05143.
[54] Roland Bacon,et al. MPDAF: MUSE Python Data Analysis Framework , 2016 .
[55] Simon J. Lilly,et al. UBIQUITOUS GIANT Lyα NEBULAE AROUND THE BRIGHTEST QUASARS AT z ∼ 3.5 REVEALED WITH MUSE , 2016, 1605.01422.
[56] Martin M. Roth,et al. MUSE crowded field 3D spectroscopy of over 12 000 stars in the globular cluster NGC 6397 - I. The first comprehensive HRD of a globular cluster , 2016, 1602.01649.
[57] Eric Emsellem,et al. Exploring the mass assembly of the early-type disc galaxy NGC 3115 with MUSE , 2016, 1605.07667.
[58] Simon J. Lilly,et al. ZAP -- Enhanced PCA Sky Subtraction for Integral Field Spectroscopy , 2016, 1602.08037.
[59] Martin M. Roth,et al. On the Origin of Diffuse Ionized Gas in the Antennae Galaxy , 2017, 1712.04450.
[60] Lutz Wisotzki,et al. LSDCat: Detection and cataloguing of emission-line sources in integral-field spectroscopy datacubes , 2017, 1703.05166.
[61] David Mary,et al. The MUSE Hubble Ultra Deep Field Survey: I. Survey description, data reduction and source detection , 2017, 1710.03002.
[62] Guy Monnet,et al. Optical 3D-Spectroscopy for Astronomy , 2017 .
[63] B. Guiderdoni,et al. Nearly all the sky is covered by Lyman-α emission around high-redshift galaxies , 2018, Nature.
[64] Jonathan Tennyson,et al. Analysis of gaseous ammonia (NH3) absorption in the visible spectrum of Jupiter - Update , 2018, Icarus.
[65] J. J. González-Vidal,et al. Gaia Data Release 2 , 2018, Astronomy & Astrophysics.
[66] Christer Sandin,et al. Lyman-continuum leakage as dominant source of diffuse ionized gas in the Antennae galaxy , 2018 .
[67] Matthew Colless,et al. The SAMI Galaxy Survey: Data Release Two with absorption-line physics value-added products , 2018, Monthly Notices of the Royal Astronomical Society.
[68] R. Pello,et al. Kinematics, turbulence, and star formation of z ∼ 1 strongly lensed galaxies seen with MUSE , 2018, 1802.08451.
[69] M. Steinmetz,et al. Cluster kinematics and stellar rotation in NGC 419 with MUSE and adaptive optics , 2018, Monthly Notices of the Royal Astronomical Society.
[70] A. Kelz,et al. MUSE crowded field 3D spectroscopy in NGC 300 , 2018, Astronomy & Astrophysics.
[71] Martin M. Roth,et al. A stellar census in globular clusters with MUSE: The contribution of rotation to cluster dynamics studied with 200 000 stars , 2017, 1710.07257.
[72] T. Nanayakkara,et al. The MUSE-Wide Survey: survey description and first data release , 2018, Astronomy & Astrophysics.
[73] J. H. Knapen,et al. MUSE-AO view of the starburst–AGN connection: NGC 7130 , 2018, Astronomy & Astrophysics.
[74] C. U. Keller,et al. Two accreting protoplanets around the young star PDS 70 , 2019, Nature Astronomy.
[75] Gaspare Lo Curto,et al. Rotational and Rotational-Vibrational Raman Spectroscopy of Air to Characterize Astronomical Spectrographs. , 2019, Physical review letters.
[76] I. Smail,et al. The MUSE Ultra Deep Field (MUDF). II. Survey design and the gaseous properties of galaxy groups at 0.5 < z < 1.5 , 2019, Monthly Notices of the Royal Astronomical Society.
[77] T. Contini,et al. Three-Dimensional Optimal Spectral Extraction (TDOSE) from integral field spectroscopy , 2019, Astronomy & Astrophysics.
[78] G. Orton,et al. Latitudinal variation in the abundance of methane (CH4) above the clouds in Neptune's atmosphere from VLT/MUSE Narrow Field Mode Observations , 2019, Icarus.
[79] Sylvain Oberti,et al. Physics-based model of the adaptive-optics-corrected point spread function , 2019, Astronomy & Astrophysics.