Robust factional order PID controllers: The first generation CRONE CSD approach

This paper presents how common PID controllers have been generalized to fractional order PID controllers and how the additional tuning parameters can be used to meet more requirements. It is shown that the first generation CRONE control-system design methodology is able to provided robust fractional order PID for uncertain gain perturbed plants.

[1]  Alain Oustaloup,et al.  Frequency-domain synthesis of a filter using Viete root functions , 2002, IEEE Trans. Autom. Control..

[2]  S. Manabe The non-integer integral and its application to control systems. , 1961 .

[3]  Alain Oustaloup,et al.  The CRONE Control of Resonant Plants: Application to a Flexible Transmission , 1995, Eur. J. Control.

[4]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[5]  Alain Oustaloup,et al.  Fractional-order control and interval analysis of SISO systems with time-delayed state , 2008 .

[6]  YangQuan Chen,et al.  Fractional-order systems and control : fundamentals and applications , 2010 .

[7]  Alain Oustaloup,et al.  Robust control design for multivariable plants with time-delays , 2009 .

[8]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[9]  Paluri S. V. Nataraj,et al.  On Fractional-Order QFT Controllers , 2007 .

[10]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[11]  Alain Oustaloup,et al.  ANALYSIS AND CRONE CONTROL OF TIME VARYING SYSTEMS WITH ASYMPTOTICALLY CONSTANT COEFFICIENTS , 2002 .

[12]  A. Tustin,et al.  The design of systems for automatic control of the position of massive objects , 1958 .

[13]  Alain Oustaloup,et al.  Frequency-band complex noninteger differentiator: characterization and synthesis , 2000 .

[14]  Alain Oustaloup,et al.  The CRONE toolbox for Matlab , 2000, CACSD. Conference Proceedings. IEEE International Symposium on Computer-Aided Control System Design (Cat. No.00TH8537).

[15]  Alain Oustaloup,et al.  From fractal robustness to the CRONE control , 1999 .

[16]  A. Oustaloup,et al.  Robust Control of LTI Square Mimo Plants Using Two Crone Control Design Approaches , 2000 .

[17]  I. Podlubny Fractional differential equations , 1998 .

[18]  I. Petras,et al.  The fractional - order controllers: Methods for their synthesis and application , 2000, math/0004064.

[19]  A. Banos,et al.  Bode optimal loop shaping with CRONE compensators , 2008, MELECON 2008 - The 14th IEEE Mediterranean Electrotechnical Conference.

[20]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[21]  Patrick Lanusse,et al.  CRONE Control-System Design Toolbox for the Control Engineering Community , 2013 .

[22]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[23]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[24]  A. Banos,et al.  Tuning of Fractional PID Controllers by Using QFT , 2006, IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics.

[25]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[26]  D. Valério,et al.  An Introduction to Fractional Control , 2012 .