Revisiting the Black Hole Entropy and the Information Paradox
暂无分享,去创建一个
[1] Page,et al. Average entropy of a subsystem. , 1993, Physical review letters.
[2] J. Oppenheimer,et al. On Continued Gravitational Contraction , 1939 .
[3] R. Bousso. Firewalls from double purity , 2013, 1308.2665.
[4] C. Corda. Bohr-Like Model for Black Holes , 2014 .
[5] O. Stoica. The geometry of singularities and the black hole information paradox , 2015, 1507.03131.
[6] The Black hole information paradox , 2005, hep-th/0510148.
[7] L. Filipov,et al. Entropic Entanglement: Information Prison Break , 2017, 1707.01768.
[8] L. Parker,et al. QUANTIZED FIELDS AND PARTICLE CREATION IN EXPANDING UNIVERSES. II. , 1969 .
[9] S. Raju,et al. Black hole interior in the holographic correspondence and the information paradox. , 2014, Physical review letters.
[10] James L. Park. The concept of transition in quantum mechanics , 1970 .
[11] Andrea Giugno,et al. Thermal BEC Black Holes , 2015, Entropy.
[12] K. Bryan,et al. Black holes and information: A new take on an old paradox , 2016, 1603.07569.
[13] R. Penrose. Gravitational collapse and spacetime singularities , 1965 .
[14] P. Davies. Scalar production in Schwarzschild and Rindler metrics , 1975 .
[15] P. Hayden,et al. Quantum computation vs. firewalls , 2013, 1301.4504.
[16] David Finkelstein,et al. Past-Future Asymmetry of the Gravitational Field of a Point Particle , 1958 .
[17] R. Feynman,et al. Quantum Mechanics and Path Integrals , 1965 .
[18] R. Mann,et al. Brick walls for black holes , 1992 .
[19] J. Bekenstein. How does the Entropy/Information Bound Work? , 2004, quant-ph/0404042.
[20] R. Ellis,et al. Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.
[21] Julian Schwinger,et al. Theory of Many-Particle Systems. I , 1959 .
[22] A. Dabholkar. Exact Counting of Supersymmetric Black Hole Microstates , 2004, hep-th/0409148.
[23] B. Dolan. Where is the PdV term in the fist law of black hole thermodynamics , 2012, 1209.1272.
[24] L. Susskind,et al. Cool horizons for entangled black holes , 2013, 1306.0533.
[25] Constraints on black hole remnants. , 1993, Physical review. D, Particles and fields.
[26] Entropy from conformal field theory at Killing horizons , 1999, gr-qc/9906126.
[27] Solutions of the Klein-Gordon equation on manifolds with variable geometry including dimensional reduction , 2010, 1009.5309.
[28] Price,et al. Membrane viewpoint on black holes: Properties and evolution of the stretched horizon. , 1986, Physical review. D, Particles and fields.
[29] A. Eddington. A Comparison of Whitehead's and Einstein's Formulæ , 1924, Nature.
[30] D. Marolf,et al. The black hole information problem: past, present, and future , 2017, Reports on progress in physics. Physical Society.
[31] R. Bousso. Observer Complementarity Upholds the Equivalence Principle , 2012 .
[32] C. Vafa,et al. Microscopic origin of the Bekenstein-Hawking entropy , 1996, hep-th/9601029.
[33] R. Wald,et al. Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics , 1994 .
[34] D. Dieks. Communication by EPR devices , 1982 .
[35] L. Cugliandolo. The effective temperature , 2011, 1104.4901.
[36] R. Bousso. The Holographic principle , 2002, hep-th/0203101.
[37] Hal M. Haggard,et al. White holes as remnants: a surprising scenario for the end of a black hole , 2018, Classical and Quantum Gravity.
[38] S. Hawking. The Information Paradox for Black Holes. , 2015, 1509.01147.
[39] W. Unruh. Notes on black-hole evaporation , 1976 .
[40] Stephen W. Hawking,et al. Superrotation charge and supertranslation hair on black holes , 2016, 1611.09175.
[41] S. Hawking,et al. Information Preservation and Weather Forecasting for Black Holes , 2014, 1401.5761.
[42] Susskind,et al. The stretched horizon and black hole complementarity. , 1993, Physical review. D, Particles and fields.
[43] I. I. Ivanchik. THEORY OF THE MANY-PARTICLE SYSTEMS. , 1968 .
[44] Werner Israel,et al. Event Horizons in Static Vacuum Space-Times , 1967 .
[45] Counting States of Near-Extremal Black Holes. , 1996, Physical review letters.
[46] S. Hawking. The unpredictability of quantum gravity , 1982 .
[47] V. Frolov. Information loss problem and a ‘black hole’ model with a closed apparent horizon , 2014, 1402.5446.
[48] Kerr-Newman Solutions with Analytic Singularity and no Closed Timelike Curves , 2011, 1111.7082.
[49] T. Peters. Gravitation , 2018, PHYSIK.
[50] J. Preskill. Do Black Holes Destroy Information , 1992, hep-th/9209058.
[51] L. Susskind,et al. Complexity and Shock Wave Geometries , 2014, 1406.2678.
[52] F. Wilczek,et al. Hawking radiation As tunneling , 1999, Physical review letters.
[53] A. G. Alexei,et al. OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .
[54] G. Lawrence,et al. Measurement of stimulated Hawking emission in an analogue system. , 2010, Physical review letters.
[55] O. Stoica. The geometry of warped product singularities , 2011, 1105.3404.
[56] Rudolph Ernest Langer,et al. Relativity And Modern Physics , 1925 .
[57] J. Maldacena. The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.
[58] S. Hawking. Particle creation by black holes , 1975 .
[59] Jacobson,et al. Thermodynamics of spacetime: The Einstein equation of state. , 1995, Physical review letters.
[60] S. Hawking. Information loss in black holes , 2005, hep-th/0507171.
[61] Simon Schaffer,et al. John Michell and Black Holes , 1979 .
[62] George F. R. Ellis,et al. The Large Scale Structure of Space-Time , 2023 .
[63] R. Penrose,et al. The singularities of gravitational collapse and cosmology , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[64] Hal M. Haggard,et al. Quantum-gravity effects outside the horizon spark black to white hole tunneling , 2014, 1407.0989.
[65] E. Verlinde,et al. On the origin of gravity and the laws of Newton , 2010, 1001.0785.
[66] C. Rovelli,et al. Planck stars , 2014, 1401.6562.
[67] Stephen W. Hawking,et al. Gravitational radiation from colliding black holes , 1971 .
[68] Brandon Carter,et al. Axisymmetric Black Hole Has Only Two Degrees of Freedom , 1971 .
[69] M. Srednicki,et al. Entropy and area. , 1993, Physical review letters.
[70] S. Fulling,et al. Nonuniqueness of Canonical Field Quantization in Riemannian Space-Time , 1973 .
[71] Lee,et al. Quantum source of entropy for black holes. , 1986, Physical review. D, Particles and fields.
[72] M. Markov. Problems of a perpetually oscillating universe , 1984 .
[73] C. Stoica. BIG BANG SINGULARITY IN THE FRIEDMANN-LEMA ^ ITRE-ROBERTSON-WALKER SPACETIME , 2011 .
[74] A. Ashtekar,et al. Quantum geometry and black hole entropy , 1998 .
[75] P. Prester. Curing Black Hole Singularities with Local Scale Invariance , 2013, 1309.1188.
[76] A. G.,et al. MEASUREMENTS OF AND FROM 42 HIGH-REDSHIFT SUPERNOVAE , 1998 .
[77] W. Wootters,et al. A single quantum cannot be cloned , 1982, Nature.
[78] L. Smolin,et al. Conservative solutions to the black hole information problem , 2009, 0901.3156.
[79] O. Stoica. Causal Structure and Spacetime Singularities , 2015, 1504.07110.
[80] J. Polchinski,et al. Black holes: complementarity or firewalls? , 2012, Journal of High Energy Physics.
[81] Stephen W Hawking,et al. Soft Hair on Black Holes. , 2016, Physical review letters.
[82] Brandon Carter,et al. The four laws of black hole mechanics , 1973 .
[83] M. Heusler. No-Hair Theorems and Black Holes with Hair , 1996, gr-qc/9610019.
[84] L. Susskind. The world as a hologram , 1994, hep-th/9409089.
[85] R. Kubo. Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .
[86] D. Perepelitsa,et al. Path integrals in quantum mechanics , 2013 .
[87] Frolov,et al. Dynamical origin of the entropy of a black hole. , 1993, Physical review. D, Particles and fields.
[88] R. Penrose,et al. Gravitational Collapse : The Role of General Relativity 1 , 2002 .
[89] Cristi Stoica. Beyond the Friedmann—Lemaître—Robertson—Walker Big Bang Singularity , 2012, 1203.1819.
[90] W. Unruh,et al. Information loss , 2017, Reports on progress in physics. Physical Society.
[91] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[92] O. Stoica. Spacetimes with singularities , 2011, 1108.5099.
[93] P. Dirac,et al. THE LAGRANGIAN IN QUANTUM MECHANICS. , 2022 .
[94] Hawking. Evaporation of two-dimensional black holes. , 1992, Physical review letters.
[95] C. Corda. Effective temperature, Hawking radiation and quasinormal modes , 2012, 1205.5251.
[96] R. Wald,et al. Black hole entropy is Noether charge. , 1993, Physical review. D, Particles and fields.
[97] G. Hooft. On the Quantum Structure of a Black Hole , 1985 .
[98] S. Braunstein,et al. Better late than never: information retrieval from black holes. , 2009, Physical review letters.
[99] Zhao-Long Wang,et al. Bulk Local Operators, Conformal Descendants and Radial Quantization , 2015, 1507.05550.
[100] C. Rovelli. Black holes have more states than those giving the Bekenstein-Hawking entropy: a simple argument , 2017, 1710.00218.
[101] Werner Israel,et al. Event horizons in static electrovac space-times , 1968 .
[102] C. Corda. Black hole quantum spectrum , 2012, 1210.7747.
[103] J. Bekenstein. Black Holes and Entropy , 1973, Jacob Bekenstein.
[104] O. Stoica. Gauge theory at singularities , 2014, 1408.3812.
[105] Almost certain escape from black holes in final state projection models. , 2004, Physical review letters.
[106] R. Casadio,et al. Black holes as self-sustained quantum states, and Hawking radiation , 2014, 1405.4192.
[107] Ovidiu Cristinel Stoica,et al. On singular semi-Riemannian manifolds , 2011, 1105.0201.
[108] A. Ashtekar. Lectures on Non-Perturbative Canonical Gravity , 1991 .
[109] R. Bousso. Complementarity is not enough , 2012, 1207.5192.
[110] R. Penrose. The question of cosmic censorship , 1999 .
[111] Lawrence S. Schulman,et al. Time''s arrow and quantum measurement , 1997 .
[112] J. Kirkwood. The statistical mechanical theory of irreversible processes , 1949 .
[113] Scott Aaronson,et al. The Complexity of Quantum States and Transformations: From Quantum Money to Black Holes , 2016, Electron. Colloquium Comput. Complex..
[114] C. R. Stephens,et al. Black hole evaporation without information loss , 1993, gr-qc/9310006.
[115] S. Hawking. Breakdown of Predictability in Gravitational Collapse , 1976 .
[116] B F Whiting,et al. Black hole evaporation without information loss , 1994 .
[117] Thorne,et al. Statistical mechanical origin of the entropy of a rotating, charged black hole. , 1985, Physical review letters.