Revisiting the Black Hole Entropy and the Information Paradox

The black hole information paradox and the black hole entropy are currently extensively researched. The consensus about the solution of the information paradox is not yet reached, and it is not yet clear what can we learn about quantum gravity from these and the related research. It seems that the apparently irreducible paradoxes force us to give up on at least one well-established principle or another. Since we are talking about a choice between the principle of equivalence from general relativity and some essential principles from quantum theory, both being the most reliable theories we have, it is recommended to proceed with caution and search more conservative solutions. These paradoxes are revisited here, as well as the black hole complementarity and the firewall proposals, with an emphasis on the less obvious assumptions. Some arguments from the literature are reviewed, and new counterarguments are presented. Some less considered less radical possibilities are discussed, and a conservative solution, which is more consistent with both the principle of equivalence from general relativity and the unitarity from quantum theory, is discussed.

[1]  Page,et al.  Average entropy of a subsystem. , 1993, Physical review letters.

[2]  J. Oppenheimer,et al.  On Continued Gravitational Contraction , 1939 .

[3]  R. Bousso Firewalls from double purity , 2013, 1308.2665.

[4]  C. Corda Bohr-Like Model for Black Holes , 2014 .

[5]  O. Stoica The geometry of singularities and the black hole information paradox , 2015, 1507.03131.

[6]  The Black hole information paradox , 2005, hep-th/0510148.

[7]  L. Filipov,et al.  Entropic Entanglement: Information Prison Break , 2017, 1707.01768.

[8]  L. Parker,et al.  QUANTIZED FIELDS AND PARTICLE CREATION IN EXPANDING UNIVERSES. II. , 1969 .

[9]  S. Raju,et al.  Black hole interior in the holographic correspondence and the information paradox. , 2014, Physical review letters.

[10]  James L. Park The concept of transition in quantum mechanics , 1970 .

[11]  Andrea Giugno,et al.  Thermal BEC Black Holes , 2015, Entropy.

[12]  K. Bryan,et al.  Black holes and information: A new take on an old paradox , 2016, 1603.07569.

[13]  R. Penrose Gravitational collapse and spacetime singularities , 1965 .

[14]  P. Davies Scalar production in Schwarzschild and Rindler metrics , 1975 .

[15]  P. Hayden,et al.  Quantum computation vs. firewalls , 2013, 1301.4504.

[16]  David Finkelstein,et al.  Past-Future Asymmetry of the Gravitational Field of a Point Particle , 1958 .

[17]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[18]  R. Mann,et al.  Brick walls for black holes , 1992 .

[19]  J. Bekenstein How does the Entropy/Information Bound Work? , 2004, quant-ph/0404042.

[20]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[21]  Julian Schwinger,et al.  Theory of Many-Particle Systems. I , 1959 .

[22]  A. Dabholkar Exact Counting of Supersymmetric Black Hole Microstates , 2004, hep-th/0409148.

[23]  B. Dolan Where is the PdV term in the fist law of black hole thermodynamics , 2012, 1209.1272.

[24]  L. Susskind,et al.  Cool horizons for entangled black holes , 2013, 1306.0533.

[25]  Constraints on black hole remnants. , 1993, Physical review. D, Particles and fields.

[26]  Entropy from conformal field theory at Killing horizons , 1999, gr-qc/9906126.

[27]  Solutions of the Klein-Gordon equation on manifolds with variable geometry including dimensional reduction , 2010, 1009.5309.

[28]  Price,et al.  Membrane viewpoint on black holes: Properties and evolution of the stretched horizon. , 1986, Physical review. D, Particles and fields.

[29]  A. Eddington A Comparison of Whitehead's and Einstein's Formulæ , 1924, Nature.

[30]  D. Marolf,et al.  The black hole information problem: past, present, and future , 2017, Reports on progress in physics. Physical Society.

[31]  R. Bousso Observer Complementarity Upholds the Equivalence Principle , 2012 .

[32]  C. Vafa,et al.  Microscopic origin of the Bekenstein-Hawking entropy , 1996, hep-th/9601029.

[33]  R. Wald,et al.  Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics , 1994 .

[34]  D. Dieks Communication by EPR devices , 1982 .

[35]  L. Cugliandolo The effective temperature , 2011, 1104.4901.

[36]  R. Bousso The Holographic principle , 2002, hep-th/0203101.

[37]  Hal M. Haggard,et al.  White holes as remnants: a surprising scenario for the end of a black hole , 2018, Classical and Quantum Gravity.

[38]  S. Hawking The Information Paradox for Black Holes. , 2015, 1509.01147.

[39]  W. Unruh Notes on black-hole evaporation , 1976 .

[40]  Stephen W. Hawking,et al.  Superrotation charge and supertranslation hair on black holes , 2016, 1611.09175.

[41]  S. Hawking,et al.  Information Preservation and Weather Forecasting for Black Holes , 2014, 1401.5761.

[42]  Susskind,et al.  The stretched horizon and black hole complementarity. , 1993, Physical review. D, Particles and fields.

[43]  I. I. Ivanchik THEORY OF THE MANY-PARTICLE SYSTEMS. , 1968 .

[44]  Werner Israel,et al.  Event Horizons in Static Vacuum Space-Times , 1967 .

[45]  Counting States of Near-Extremal Black Holes. , 1996, Physical review letters.

[46]  S. Hawking The unpredictability of quantum gravity , 1982 .

[47]  V. Frolov Information loss problem and a ‘black hole’ model with a closed apparent horizon , 2014, 1402.5446.

[48]  Kerr-Newman Solutions with Analytic Singularity and no Closed Timelike Curves , 2011, 1111.7082.

[49]  T. Peters Gravitation , 2018, PHYSIK.

[50]  J. Preskill Do Black Holes Destroy Information , 1992, hep-th/9209058.

[51]  L. Susskind,et al.  Complexity and Shock Wave Geometries , 2014, 1406.2678.

[52]  F. Wilczek,et al.  Hawking radiation As tunneling , 1999, Physical review letters.

[53]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[54]  G. Lawrence,et al.  Measurement of stimulated Hawking emission in an analogue system. , 2010, Physical review letters.

[55]  O. Stoica The geometry of warped product singularities , 2011, 1105.3404.

[56]  Rudolph Ernest Langer,et al.  Relativity And Modern Physics , 1925 .

[57]  J. Maldacena The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.

[58]  S. Hawking Particle creation by black holes , 1975 .

[59]  Jacobson,et al.  Thermodynamics of spacetime: The Einstein equation of state. , 1995, Physical review letters.

[60]  S. Hawking Information loss in black holes , 2005, hep-th/0507171.

[61]  Simon Schaffer,et al.  John Michell and Black Holes , 1979 .

[62]  George F. R. Ellis,et al.  The Large Scale Structure of Space-Time , 2023 .

[63]  R. Penrose,et al.  The singularities of gravitational collapse and cosmology , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[64]  Hal M. Haggard,et al.  Quantum-gravity effects outside the horizon spark black to white hole tunneling , 2014, 1407.0989.

[65]  E. Verlinde,et al.  On the origin of gravity and the laws of Newton , 2010, 1001.0785.

[66]  C. Rovelli,et al.  Planck stars , 2014, 1401.6562.

[67]  Stephen W. Hawking,et al.  Gravitational radiation from colliding black holes , 1971 .

[68]  Brandon Carter,et al.  Axisymmetric Black Hole Has Only Two Degrees of Freedom , 1971 .

[69]  M. Srednicki,et al.  Entropy and area. , 1993, Physical review letters.

[70]  S. Fulling,et al.  Nonuniqueness of Canonical Field Quantization in Riemannian Space-Time , 1973 .

[71]  Lee,et al.  Quantum source of entropy for black holes. , 1986, Physical review. D, Particles and fields.

[72]  M. Markov Problems of a perpetually oscillating universe , 1984 .

[73]  C. Stoica BIG BANG SINGULARITY IN THE FRIEDMANN-LEMA ^ ITRE-ROBERTSON-WALKER SPACETIME , 2011 .

[74]  A. Ashtekar,et al.  Quantum geometry and black hole entropy , 1998 .

[75]  P. Prester Curing Black Hole Singularities with Local Scale Invariance , 2013, 1309.1188.

[76]  A. G.,et al.  MEASUREMENTS OF AND FROM 42 HIGH-REDSHIFT SUPERNOVAE , 1998 .

[77]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[78]  L. Smolin,et al.  Conservative solutions to the black hole information problem , 2009, 0901.3156.

[79]  O. Stoica Causal Structure and Spacetime Singularities , 2015, 1504.07110.

[80]  J. Polchinski,et al.  Black holes: complementarity or firewalls? , 2012, Journal of High Energy Physics.

[81]  Stephen W Hawking,et al.  Soft Hair on Black Holes. , 2016, Physical review letters.

[82]  Brandon Carter,et al.  The four laws of black hole mechanics , 1973 .

[83]  M. Heusler No-Hair Theorems and Black Holes with Hair , 1996, gr-qc/9610019.

[84]  L. Susskind The world as a hologram , 1994, hep-th/9409089.

[85]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[86]  D. Perepelitsa,et al.  Path integrals in quantum mechanics , 2013 .

[87]  Frolov,et al.  Dynamical origin of the entropy of a black hole. , 1993, Physical review. D, Particles and fields.

[88]  R. Penrose,et al.  Gravitational Collapse : The Role of General Relativity 1 , 2002 .

[89]  Cristi Stoica Beyond the Friedmann—Lemaître—Robertson—Walker Big Bang Singularity , 2012, 1203.1819.

[90]  W. Unruh,et al.  Information loss , 2017, Reports on progress in physics. Physical Society.

[91]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[92]  O. Stoica Spacetimes with singularities , 2011, 1108.5099.

[93]  P. Dirac,et al.  THE LAGRANGIAN IN QUANTUM MECHANICS. , 2022 .

[94]  Hawking Evaporation of two-dimensional black holes. , 1992, Physical review letters.

[95]  C. Corda Effective temperature, Hawking radiation and quasinormal modes , 2012, 1205.5251.

[96]  R. Wald,et al.  Black hole entropy is Noether charge. , 1993, Physical review. D, Particles and fields.

[97]  G. Hooft On the Quantum Structure of a Black Hole , 1985 .

[98]  S. Braunstein,et al.  Better late than never: information retrieval from black holes. , 2009, Physical review letters.

[99]  Zhao-Long Wang,et al.  Bulk Local Operators, Conformal Descendants and Radial Quantization , 2015, 1507.05550.

[100]  C. Rovelli Black holes have more states than those giving the Bekenstein-Hawking entropy: a simple argument , 2017, 1710.00218.

[101]  Werner Israel,et al.  Event horizons in static electrovac space-times , 1968 .

[102]  C. Corda Black hole quantum spectrum , 2012, 1210.7747.

[103]  J. Bekenstein Black Holes and Entropy , 1973, Jacob Bekenstein.

[104]  O. Stoica Gauge theory at singularities , 2014, 1408.3812.

[105]  Almost certain escape from black holes in final state projection models. , 2004, Physical review letters.

[106]  R. Casadio,et al.  Black holes as self-sustained quantum states, and Hawking radiation , 2014, 1405.4192.

[107]  Ovidiu Cristinel Stoica,et al.  On singular semi-Riemannian manifolds , 2011, 1105.0201.

[108]  A. Ashtekar Lectures on Non-Perturbative Canonical Gravity , 1991 .

[109]  R. Bousso Complementarity is not enough , 2012, 1207.5192.

[110]  R. Penrose The question of cosmic censorship , 1999 .

[111]  Lawrence S. Schulman,et al.  Time''s arrow and quantum measurement , 1997 .

[112]  J. Kirkwood The statistical mechanical theory of irreversible processes , 1949 .

[113]  Scott Aaronson,et al.  The Complexity of Quantum States and Transformations: From Quantum Money to Black Holes , 2016, Electron. Colloquium Comput. Complex..

[114]  C. R. Stephens,et al.  Black hole evaporation without information loss , 1993, gr-qc/9310006.

[115]  S. Hawking Breakdown of Predictability in Gravitational Collapse , 1976 .

[116]  B F Whiting,et al.  Black hole evaporation without information loss , 1994 .

[117]  Thorne,et al.  Statistical mechanical origin of the entropy of a rotating, charged black hole. , 1985, Physical review letters.