Normal form algorithms for extended context-free grammars

We investigate the complexity of a variety of normal-form transformations for extended context-free grammars, where by extended we mean that the set of right-hand sides for each nonterminal in such a grammar is a regular set. The study is motivated by the implementation project GraMa which will provide a C++ toolkit for the symbolic manipulation of context-free objects just as Grail does for regular objects. Our results generalize known complexity bounds for context-free grammars but do so in nontrivial ways. Specifically, we introduce a new representation scheme for extended context-free grammars (the symbol-threaded expression forest), a new normal form for these grammars (dot normal form) and new regular expression algorithms. Copyright 2001 Elsevier Science B.V.

[1]  P. Malik On equivalence. , 2003, The Canadian journal of cardiology.

[2]  Günter Hotz,et al.  Normal-form transformations of context-free grammars , 1978, Acta Cybern..

[3]  Janusz A. Brzozowski,et al.  Derivatives of Regular Expressions , 1964, JACM.

[4]  Derick Wood,et al.  Theory of computation , 1986 .

[5]  Amiram Yehudai On the complexity of grammar and language problems. , 1977 .

[6]  Peter C. Chapin Formal languages I , 1973, CSC '73.

[7]  Roger Keith Barnes Exploratory Steps Towards a Grammatical Manipulation Package (GRAMPA) , 1972 .

[8]  Calvin C. Gotlieb,et al.  A List Structure Form of Grammars for Syntactic Analysis , 1970, CSUR.

[9]  Norbert Blum,et al.  Greibach Normal Form Transformation Revisited , 1999, Inf. Comput..

[10]  Alfred V. Aho,et al.  The Theory of Parsing, Translation, and Compiling , 1972 .

[11]  Derrick Wood,et al.  Theory of Computation: A Primer , 1987 .

[12]  Derick Wood,et al.  Grail : engineering automata in C++, version 2.5 , 1996 .

[13]  Sheila A. Greibach,et al.  A New Normal-Form Theorem for Context-Free Phrase Structure Grammars , 1965, JACM.

[14]  Andrzej Ehrenfeucht,et al.  An Easy Proof of Greibach Normal Form , 1984, Inf. Control..

[15]  Erich Kaltofen,et al.  Dagwood: a system for manipulating polynomials given by straight-line programs , 1988, TOMS.

[16]  Michael A. Arbib,et al.  An Introduction to Formal Language Theory , 1988, Texts and Monographs in Computer Science.

[17]  Amiram Yehudai,et al.  Eliminating Null Rules in Linear Time , 1981, Comput. J..

[18]  Derick Wood,et al.  SGML and Exceptions , 1996, PODP.

[19]  Derick Wood,et al.  Grail: A C++ Library for Automata and Expressions , 1994, J. Symb. Comput..

[20]  T. G. Szymanski,et al.  On the Equivalence, Containment, and Covering Problems for the Regular and Context-Free Languages , 1976, J. Comput. Syst. Sci..

[21]  Rockford James Ross Grammar transformations based on regular decompositions of context-free derivations. , 1978 .