A New Interpolatory Subdivision for Quadrilateral Meshes

This paper presents a new interpolatory subdivision scheme for quadrilateral meshes based on a 1–4 splitting operator. The scheme generates surfaces coincident with those of the Kobbelt interpolatory subdivision scheme for regular meshes. A new group of rules are designed for computing newly inserted vertices around extraordinary vertices. As an extension of the regular masks,the new rules are derived based on a reinterpretation of the regular masks. Eigen‐structure analysis demonstrates that subdivision surfaces generated using the new scheme are C1 continuous and, in addition, have bounded curvature.

[1]  Ayman Habib,et al.  Edge and vertex insertion for a class of C1 subdivision surfaces , 1999, Comput. Aided Geom. Des..

[2]  Charles T. Loop Bounded curvature triangle mesh subdivision with the convex hull property , 2002, The Visual Computer.

[3]  Ulf Labsik,et al.  Interpolatory √3‐Subdivision , 2000 .

[4]  Peter Schröder,et al.  Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.

[5]  Peter Schröder,et al.  Composite primal/dual -subdivision schemes , 2003, Comput. Aided Geom. Des..

[6]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[7]  Jos Stam,et al.  On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree , 2001, Comput. Aided Geom. Des..

[8]  Nira Dyn,et al.  A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..

[9]  Hujun Bao,et al.  √2 Subdivision for quadrilateral meshes , 2004, The Visual Computer.

[10]  Leif Kobbelt,et al.  Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.

[11]  Leif Kobbelt,et al.  √3-subdivision , 2000, SIGGRAPH.

[12]  D. Zorin,et al.  A unified framework for primal/dual quadrilateral subdivision schemes , 2001 .

[13]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[14]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[15]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[16]  D. Zorin Stationary Subdivision and Multiresolution Surface Representations , 1997 .

[17]  Charles T. Loop,et al.  Quad/Triangle Subdivision , 2003, Comput. Graph. Forum.

[18]  Malcolm A. Sabin,et al.  Artifacts in recursive subdivision surfaces , 2003 .

[19]  Denis Zorin,et al.  A Method for Analysis of C1 -Continuity of Subdivision Surfaces , 2000, SIAM J. Numer. Anal..

[20]  Peter Schröder,et al.  A unified framework for primal/dual quadrilateral subdivision schemes , 2001, Comput. Aided Geom. Des..

[21]  Jos Stam,et al.  A Unified Subdivision Scheme for Polygonal Modeling , 2001, Comput. Graph. Forum.

[22]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[23]  Leif Kobbelt,et al.  Subdivision scheme tuning around extraordinary vertices , 2004, Comput. Aided Geom. Des..

[24]  Peter Schröder,et al.  Normal meshes , 2000, SIGGRAPH.

[25]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..

[26]  Luiz Velho,et al.  4-8 Subdivision , 2001, Comput. Aided Geom. Des..

[27]  Hujun Bao,et al.  Interpolatory v2-Subdivision Surfaces , 2004, GMP.

[28]  Charles T. Loop Smooth Ternary Subdivision of Triangle Meshes , 2002 .

[29]  G. Umlauf Analyzing the Characteristic Map of Triangular Subdivision Schemes , 2000 .

[30]  Denis Z orin Smoothness of Stationary Subdivision on Irregular Meshes , 1998 .

[31]  Hartmut Prautzsch,et al.  Analysis of Ck-subdivision surfaces at extraordinary points , 1995 .