CloudAnalyst: A CloudSim-Based Visual Modeller for Analysing Cloud Computing Environments and Applications

Advances in Cloud computing opens up many new possibilities for Internet applications developers. Previously, a main concern of Internet applications developers was deployment and hosting of applications, because it required acquisition of a server with a fixed capacity able to handle the expected application peak demand and the installation and maintenance of the whole software infrastructure of the platform supporting the application. Furthermore, server was underutilized because peak traffic happens only at specific times. With the advent of the Cloud, deployment and hosting became cheaper and easier with the use of pay-peruse flexible elastic infrastructure services offered by Cloud providers. Because several Cloud providers are available, each one offering different pricing models and located in different geographic regions, a new concern of application developers is selecting providers and data center locations for applications. However, there is a lack of tools that enable developers to evaluate requirements of large-scale Cloud applications in terms of geographic distribution of both computing servers and user workloads. To fill this gap in tools for evaluation and modeling of Cloud environments and applications, we propose CloudAnalyst. It was developed to simulate large-scale Cloud applications with the purpose of studying the behavior of such applications under various deployment configurations. CloudAnalyst helps developers with insights in how to distribute applications among Cloud infrastructures and value added services such as optimization of applications performance and providers incoming with the use of Service Brokers.

[1]  Andrew A. Chien,et al.  The MicroGrid: a Scientific Tool for Modeling Computational Grids , 2000, ACM/IEEE SC 2000 Conference (SC'00).

[2]  Miron Livny,et al.  The cost of doing science on the cloud: The Montage example , 2008, 2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis.

[3]  Rajkumar Buyya,et al.  GridSim: a toolkit for the modeling and simulation of distributed resource management and scheduling for Grid computing , 2002, Concurr. Comput. Pract. Exp..

[4]  Rajkumar Buyya,et al.  Modeling and simulation of scalable Cloud computing environments and the CloudSim toolkit: Challenges and opportunities , 2009, 2009 International Conference on High Performance Computing & Simulation.

[5]  Eugene Ciurana,et al.  Google App Engine , 2009 .

[6]  Doug Johnson,et al.  Computing in the Clouds. , 2010 .

[7]  冯利芳 Facebook , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[8]  Rajkumar Buyya,et al.  Article in Press Future Generation Computer Systems ( ) – Future Generation Computer Systems Cloud Computing and Emerging It Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th Utility , 2022 .

[9]  Henri Casanova,et al.  Scheduling distributed applications: the SimGrid simulation framework , 2003, CCGrid 2003. 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid, 2003. Proceedings..

[10]  JENS GUSTEDT,et al.  Experimental Methodologies for Large-Scale Systems: a Survey , 2009, Parallel Process. Lett..

[11]  Rajkumar Buyya,et al.  Evaluating the cost-benefit of using cloud computing to extend the capacity of clusters , 2009, HPDC '09.

[12]  Ian T. Foster,et al.  GangSim: a simulator for grid scheduling studies , 2005, CCGrid 2005. IEEE International Symposium on Cluster Computing and the Grid, 2005..

[13]  Ross Mcnab,et al.  Simjava: A Discrete Event Simulation Library For Java , 1998 .

[14]  Rajkumar Buyya,et al.  High-Performance Cloud Computing: A View of Scientific Applications , 2009, 2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks.