Thermodynamic and economic effectiveness of a CHP unit with piston engine fueled with gas from biomass gasification

This paper presents the results of a thermodynamic and economic analysis concerning the use of gas from gasification of biomass in a cogeneration system with an internal combustion piston engine, working for the needs of a district heating network, with power of 1.5 MW in biomass supplied. The data on the gas generation and purification process were taken from real experiments conducted on a research installation with a fixed bed gasifier at the Institute for Chemical Processing of Coal in Zabrze. Electricity and heat generation eciency and electric and thermal power of the system were primarily used as indicators of the thermodynamic evaluation. The economic analysis was carried out using discount methods, taking into account the existence of support mechanisms in the form of the colorful certificates. A sensitivity analysis of evaluation indices to the change of selected characteristics was performed.

[1]  Anna Skorek-Osikowska,et al.  Economic analysis of a supercritical coal-fired CHP plant integrated with an absorption carbon capture installation , 2014 .

[2]  Olivier Le Corre,et al.  Combustion of Syngas in Internal Combustion Engines , 2008 .

[3]  P. Kacejko,et al.  Gazowe układy kogeneracyjne , 2006 .

[4]  Anna Skorek-Osikowska,et al.  The influence of the size of the CHP (combined heat and power) system integrated with a biomass fueled gas generator and piston engine on the thermodynamic and economic effectiveness of electricity and heat generation , 2014 .

[5]  Anna Skorek-Osikowska,et al.  Thermodynamic and economic analysis of the different variants of a coal-fired, 460 MW power plant using oxy-combustion technology , 2013 .

[6]  Jacek Kalina,et al.  Integrated biomass gasification combined cycle distributed generation plant with reciprocating gas engine and ORC , 2011 .

[7]  Y. Son,et al.  Gasification and power generation characteristics of woody biomass utilizing a downdraft gasifier , 2011 .

[8]  Marian Wysocki,et al.  Analysis of operation of cogeneration installation equipped with a fix bed downdraft gasifier , 2013 .

[9]  Anna Skorek-Osikowska,et al.  Research stand with a micro-cogeneration unit based on a free-piston Stirling engine , 2014 .

[10]  Janusz Kotowicz,et al.  Energetic analysis of a system integrated with biomass gasification , 2013 .

[11]  Anna Skorek-Osikowska,et al.  Porównanie efektywności ekonomicznej układów kogeneracyjnych z generatorem gazu procesowego GazEla , 2012 .

[12]  Peter Haselbacher,et al.  Deliverable 8 : Biomass gasification – State of the art description , 2010 .

[13]  Janusz Kotowicz,et al.  Badania eksperymentalne zgazowania biomasy pod kątem wykorzystania gazu procesowego w układzie kogeneracji , 2010 .

[14]  A. London,et al.  Compact heat exchangers , 1960 .

[15]  Janusz Kotowicz,et al.  Instalacja zgazowania biomasy zintegrowana z silnikiem spalinowym , 2011 .

[16]  N. Panwar,et al.  Role of renewable energy sources in environmental protection: A review , 2011 .

[17]  T. Nussbaumer,et al.  Gas cleaning for IC engine applications from fixed bed biomass gasification , 1999 .

[18]  Electo Eduardo Silva Lora,et al.  Syngas production in downdraft biomass gasifiers and its application using internal combustion engines , 2012 .

[19]  Henrik Lund,et al.  Renewable energy strategies for sustainable development , 2007 .