18O, 2H, and ³H isotopic data for understanding groundwater recharge and circulation systems in crystalline rocks terrain of Southeastern Brazil

[1]  Mirna Aparecida Neves,et al.  Hidrogeoquímica do Sistema Aquífero Cristalino no sul do estado do Espírito Santo – Brasil , 2021, Geologia USP. Série Científica.

[2]  E. Dantas,et al.  Two generations of mafic dyke swarms in the Southeastern Brazilian coast: reactivation of structural lineaments during the gravitational collapse of the Araçuaí-Ribeira Orogen (500 Ma) and West Gondwana breakup (140 Ma) , 2020 .

[3]  Feng’e Zhang,et al.  Characterization of recharge processes and groundwater flow paths using isotopes in the arid Santanghu basin, Northwest China , 2020, Hydrogeology Journal.

[4]  A. Dufresne,et al.  Iron-oxidizer hotspots formed by intermittent oxic–anoxic fluid mixing in fractured rocks , 2020, Nature Geoscience.

[5]  Tianming Huang,et al.  Hydrogeochemical evolution and groundwater quality assessment in the Dake Lake Basin, Northwest China , 2019, Journal of Radioanalytical and Nuclear Chemistry.

[6]  Mirna Aparecida Neves,et al.  Compartimentação morfoestrutural da Bacia Hidrográfica do Rio Itapemirim, sul do estado do Espírito Santo , 2018, Geologia USP. Série Científica.

[7]  A. Patera,et al.  Mapping oxygen stable isotopes of precipitation in Italy , 2016 .

[8]  Simona Fratianni,et al.  Changes in precipitation extremes in Brazil (Paraná River Basin) , 2016, Theoretical and Applied Climatology.

[9]  G. Jeelani,et al.  Delineation of the recharge areas and distinguishing the sources of karst springs in Bringi watershed, Kashmir Himalayas using hydrochemistry and environmental isotopes , 2015, Journal of Earth System Science.

[10]  L. Aquilina,et al.  Groundwater sources and geochemical processes in a crystalline fault aquifer , 2014 .

[11]  E. February,et al.  Spatial analysis of hydrogen and oxygen stable isotopes (“isoscapes”) in ground water and tap water across South Africa , 2014 .

[12]  Luiz Carlos da Silva,et al.  The hot back-arc zone of the Araçuaí orogen, Eastern Brazil : from sedimentation to granite generation. , 2014 .

[13]  L. Araguás‐Araguás,et al.  Isotopic Patterns in Modern Global Precipitation , 2013 .

[14]  G. Haug,et al.  Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India , 2010 .

[15]  K. Novakowski,et al.  Using stable isotopes and hydraulic head data to investigate groundwater recharge and discharge in a fractured rock aquifer , 2009 .

[16]  E. Zagana,et al.  Chloride, hydrochemical and isotope methods of groundwater recharge estimation in eastern Mediterranean areas: a case study in Jordan , 2007 .

[17]  B. Sukhija,et al.  Characterisation of recharge processes and groundwater flow mechanisms in weathered-fractured granites of Hyderabad (India) using isotopes , 2006 .

[18]  S. Tweed,et al.  Distinguishing groundwater flow paths in different fractured-rock aquifers using groundwater chemistry: Dandenong Ranges, southeast Australia , 2005 .

[19]  H. Matsuyama,et al.  Year-to-Year Variations of the Stable Isotopes in Precipitation in February at Cuiabá, Located on the Northern Fringe of Pantanal, Brazil , 2005 .

[20]  E. Salameh Using environmental isotopes in the study of the recharge-discharge mechanisms of the Yarmouk catchment area in Jordan , 2004 .

[21]  P. Bierman,et al.  δ18O, δD and 3H measurements constrain groundwater recharge patterns in an upland fractured bedrock aquifer, Vermont, USA , 2000 .

[22]  Hudson H. Nkotagu,et al.  Application of environmental isotopes to groundwater recharge studies in a semi-arid fractured crystalline basement area of Dodoma, Tanzania , 1996 .

[23]  By W. Dansga,et al.  Stable isotopes in precipitation , 2010 .

[24]  S. Rose Tritium in ground water of the georgia piedmont: Implications for recharge and flow paths , 1992 .

[25]  B. Taylor,et al.  Light stable isotope systematics of large‐scale hydrologic regimes in California and Nevada , 1991 .