Improvement Schemes for Indoor Mobile Location Estimation: A Survey

Location estimation is significant in mobile and ubiquitous computing systems. The complexity and smaller scale of the indoor environment impose a great impact on location estimation. The key of location estimation lies in the representation and fusion of uncertain information from multiple sources. The improvement of location estimation is a complicated and comprehensive issue. A lot of research has been done to address this issue. However, existing research typically focuses on certain aspects of the problem and specific methods. This paper reviews mainstream schemes on improving indoor location estimation from multiple levels and perspectives by combining existing works and our own working experiences. Initially, we analyze the error sources of common indoor localization techniques and provide a multilayered conceptual framework of improvement schemes for location estimation. This is followed by a discussion of probabilistic methods for location estimation, including Bayes filters, Kalman filters, extended Kalman filters, sigma-point Kalman filters, particle filters, and hidden Markov models. Then, we investigate the hybrid localization methods, including multimodal fingerprinting, triangulation fusing multiple measurements, combination of wireless positioning with pedestrian dead reckoning (PDR), and cooperative localization. Next, we focus on the location determination approaches that fuse spatial contexts, namely, map matching, landmark fusion, and spatial model-aided methods. Finally, we present the directions for future research.

[1]  Henri Nurminen,et al.  Motion model for positioning with graph-based indoor map , 2014, 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[2]  John Krumm,et al.  SmartMoveX on a Graph - An Inexpensive Active Badge Tracker , 2002, UbiComp.

[3]  Guaning Chen,et al.  An Indoor Collaborative Pedestrian Dead Reckoning System , 2013, 2013 42nd International Conference on Parallel Processing.

[4]  Stéphane Donikian,et al.  Crowd of Virtual Humans: a New Approach for Real Time Navigation in Complex and Structured Environments , 2004, Comput. Graph. Forum.

[5]  L. Rabiner,et al.  An introduction to hidden Markov models , 1986, IEEE ASSP Magazine.

[6]  Sajal K. Das,et al.  Device localization in ubiquitous computing environments , 2008 .

[7]  Agathoniki Trigoni,et al.  Lightweight map matching for indoor localisation using conditional random fields , 2014, IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks.

[8]  Jie Yang,et al.  Push the limit of WiFi based localization for smartphones , 2012, Mobicom '12.

[9]  Kyu-Han Kim,et al.  SAIL: single access point-based indoor localization , 2014, MobiSys.

[10]  Eyal de Lara,et al.  Location Systems: An Introduction to the Technology Behind Location Awareness , 2008, Location Systems.

[11]  Wei Chen,et al.  An effective Pedestrian Dead Reckoning algorithm using a unified heading error model , 2010, IEEE/ION Position, Location and Navigation Symposium.

[12]  Yin Chen,et al.  FM-based indoor localization , 2012, MobiSys '12.

[13]  Valérie Renaudin,et al.  Motion Mode Recognition and Step Detection Algorithms for Mobile Phone Users , 2013, Sensors.

[14]  Y. Jay Guo,et al.  Statistical NLOS Identification Based on AOA, TOA, and Signal Strength , 2009, IEEE Transactions on Vehicular Technology.

[15]  Hari Balakrishnan,et al.  Accurate, Low-Energy Trajectory Mapping for Mobile Devices , 2011, NSDI.

[16]  Jeffrey Hightower The Location Stack: Multi-sensor Fusion in Action , 2003 .

[17]  Chansik Park,et al.  Extended Kalman Filter for wireless LAN based indoor positioning , 2008, Decis. Support Syst..

[18]  Gaetano Borriello,et al.  Particle Filters for Location Estimation in Ubiquitous Computing: A Case Study , 2004, UbiComp.

[19]  Giuseppe Thadeu Freitas de Abreu,et al.  Indoor positioning: A key enabling technology for IoT applications , 2014, 2014 IEEE World Forum on Internet of Things (WF-IoT).

[20]  Patrick Robertson,et al.  Development and Evaluation of a Combined WLAN and Inertial Indoor Pedestrian Positioning System , 2009 .

[21]  R. Michael Buehrer,et al.  Improving positioning in LTE through collaboration , 2014, 2014 11th Workshop on Positioning, Navigation and Communication (WPNC).

[22]  Kun-Chan Lan,et al.  On Calibrating the Sensor Errors of a PDR-Based Indoor Localization System , 2013, Sensors.

[23]  Dik Lun Lee,et al.  A model-based WiFi localization method , 2007 .

[24]  Moustafa Youssef,et al.  CoSDEO 2016 Keynote: A decade later — Challenges: Device-free passive localization for wireless environments , 2007, 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops).

[25]  Guobin Shen,et al.  Walkie-Markie: Indoor Pathway Mapping Made Easy , 2013, NSDI.

[26]  R. Inkol,et al.  Hybrid RSS/AOA emitter location estimation based on least squares and maximum likelihood criteria , 2012, 2012 26th Biennial Symposium on Communications (QBSC).

[27]  Henry A. Kautz,et al.  Voronoi tracking: location estimation using sparse and noisy sensor data , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[28]  Qian Zhang,et al.  Adometer: Push the Limit of Pedestrian Indoor Localization through Cooperation , 2014, IEEE Transactions on Mobile Computing.

[29]  Moe Z. Win,et al.  Network localization and navigation via cooperation , 2011, IEEE Communications Magazine.

[30]  Moustafa Youssef,et al.  CrowdInside: automatic construction of indoor floorplans , 2012, SIGSPATIAL/GIS.

[31]  Carsten Isert,et al.  Self-contained indoor positioning on off-the-shelf mobile devices , 2010, 2010 International Conference on Indoor Positioning and Indoor Navigation.

[32]  Patrick Robertson,et al.  Characterization of the indoor magnetic field for applications in Localization and Mapping , 2012, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[33]  D. Simon Kalman filtering with state constraints: a survey of linear and nonlinear algorithms , 2010 .

[34]  J. Pajunen,et al.  Hybrid positioning system combining angle-based localization, pedestrian dead reckoning and map filtering , 2010, 2010 International Conference on Indoor Positioning and Indoor Navigation.

[35]  Simon A. Dobson,et al.  LOC8: A Location Model and Extensible Framework for Programming with Location , 2010, IEEE Pervasive Computing.

[36]  Eric A. Wan,et al.  RSSI-Based Indoor Localization and Tracking Using Sigma-Point Kalman Smoothers , 2009, IEEE Journal of Selected Topics in Signal Processing.

[37]  Dieter Fox,et al.  Bayesian Filtering for Location Estimation , 2003, IEEE Pervasive Comput..

[38]  Simone Frattasi,et al.  Mobile Positioning and Tracking: From Conventional to Cooperative Techniques , 2010 .

[39]  Yunhao Liu,et al.  Location, Localization, and Localizability , 2010, Journal of Computer Science and Technology.

[40]  Jürgen Bohn,et al.  Robust Probabilistic Positioning based on High-Level Sensor-Fusion and Map Knowledge , 2003 .

[41]  Simon J. Godsill,et al.  Improvement Strategies for Monte Carlo Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.

[42]  Frank Dürr,et al.  MapGENIE: Grammar-enhanced indoor map construction from crowd-sourced data , 2014, 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom).

[43]  Andrew G. Dempster,et al.  Indoor positioning system based on sensor fusion for the Blind and Visually Impaired , 2012, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[44]  Liping Yang,et al.  A navigation ontology for outdoor-indoor space: (work-in-progress) , 2011, ISA '11.

[45]  A. Bahillo,et al.  Hybrid RSS-RTT localization scheme for wireless networks , 2010, 2010 International Conference on Indoor Positioning and Indoor Navigation.

[46]  Jun Sun,et al.  Social-Loc: improving indoor localization with social sensing , 2013, SenSys '13.

[47]  Ronald Raulefs,et al.  Constrained indoor distributed cooperative positioning , 2011, 2011 8th International Workshop on Multi-Carrier Systems & Solutions.

[48]  Dong-Hwan Hwang,et al.  A Step, Stride and Heading Determination for the Pedestrian Navigation System , 2004 .

[49]  Cem Ersoy,et al.  A Review and Taxonomy of Activity Recognition on Mobile Phones , 2013 .

[50]  Axel Küpper,et al.  Semantic Positioning - An Innovative Approach for Providing Location-Based Services Based on the Web of Data , 2013, 2013 IEEE Seventh International Conference on Semantic Computing.

[51]  P.M. Djuric,et al.  An improved regularized particle filter for GPS/INS integration , 2005, IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, 2005..

[52]  Lawrence Wai-Choong Wong,et al.  An indoor dead-reckoning algorithm with map matching , 2013, 2013 9th International Wireless Communications and Mobile Computing Conference (IWCMC).

[53]  C. Dessiniotis,et al.  Part two: Kalman filtering options for error minimization in statistical terminal assisted mobile positioning , 2008, Comput. Commun..

[54]  U. Mengali,et al.  Joint TOA and AOA Estimation for UWB Localization Applications , 2011, IEEE Transactions on Wireless Communications.

[55]  Kaveh Pahlavan,et al.  A Novel Cooperative Localization Algorithm for Indoor Sensor Networks , 2006, 2006 IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications.

[56]  Zhi Ding,et al.  Cooperative Self-Navigation in a Mixed LOS and NLOS Environment , 2014, IEEE Transactions on Mobile Computing.

[57]  Xiang Li,et al.  A grid graph-based model for the analysis of 2D indoor spaces , 2010, Comput. Environ. Urban Syst..

[58]  Seong Yun Cho,et al.  Sensor Fusion and Error Compensation Algorithm for Pedestrian Navigation System , 2003 .

[59]  K. C. Ho,et al.  A simple and efficient estimator for hyperbolic location , 1994, IEEE Trans. Signal Process..

[60]  K. Pahlavan,et al.  An Error Propagation Aware Algorithm for Precise Cooperative Indoor Localization , 2006, MILCOM 2006 - 2006 IEEE Military Communications conference.

[61]  Paul-Gerhard Plöger,et al.  Pedestrian indoor positioning using smartphone multi-sensing, radio beacons, user positions probability map and IndoorOSM floor plan representation , 2014, 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[62]  Moustafa Youssef,et al.  No need to war-drive: unsupervised indoor localization , 2012, MobiSys '12.

[63]  Frank Dürr,et al.  Opportunistic position update protocols for mobile devices , 2013, UbiComp.

[64]  Yunyoung Nam Map-based Indoor People Localization using an Inertial Measurement Unit , 2011, J. Inf. Sci. Eng..

[65]  Venkata N. Padmanabhan,et al.  Indoor localization without the pain , 2010, MobiCom.

[66]  Chin-Der Wann,et al.  Hybrid TDOA/AOA Indoor Positioning and Tracking Using Extended Kalman Filters , 2006, 2006 IEEE 63rd Vehicular Technology Conference.

[67]  Rudolph van der Merwe,et al.  Sigma-point kalman filters for probabilistic inference in dynamic state-space models , 2004 .

[68]  Michael Wallbaum Indoor geolocation using wireless local area networks , 2006 .

[69]  Paul J. M. Havinga,et al.  Towards Smart Surroundings: Enabling Techniques and Technologies for Localization , 2005, LoCA.

[70]  Jing Liu,et al.  Survey of Wireless Indoor Positioning Techniques and Systems , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[71]  Henry Tirri,et al.  Probabilistic Methods for Location Estimation in Wireless Networks , 2005 .

[72]  Guanrong Chen,et al.  Kalman Filtering with Real-time Applications , 1987 .

[73]  Petri Myllymäki,et al.  Ma$$iv -- An Intelligent Mobile Grocery Assistant , 2012, 2012 Eighth International Conference on Intelligent Environments.

[74]  Janne Haverinen,et al.  Global indoor self-localization based on the ambient magnetic field , 2009, Robotics Auton. Syst..

[75]  Jari Syrjärinne,et al.  Investigating effective methods for integration of building's map with low cost inertial sensors and wifi-based positioning , 2013, International Conference on Indoor Positioning and Indoor Navigation.

[76]  Ziqi Zhang,et al.  Hybrid TOA/AOA Cooperative Localization in Non-Line-of-Sight Environments , 2012, 2012 IEEE 75th Vehicular Technology Conference (VTC Spring).

[77]  A. Doucet,et al.  A note on auxiliary particle filters , 2008 .

[78]  Stephan Winter,et al.  Indoor Spatial Information , 2012, Int. J. 3 D Inf. Model..

[79]  Yuichi Motai,et al.  Multiple model framework of adaptive extended kalman filtering for predicting vehicle location , 2006, 2006 IEEE Intelligent Transportation Systems Conference.

[80]  H. Haas,et al.  Pedestrian Dead Reckoning : A Basis for Personal Positioning , 2006 .

[81]  Hirozumi Yamaguchi,et al.  Context-supported local crowd mapping via collaborative sensing with mobile phones , 2014, Pervasive Mob. Comput..

[82]  A. Kornhauser,et al.  An Introduction to Map Matching for Personal Navigation Assistants , 1998 .

[83]  Mikkel Baun Kjærgaard,et al.  Hyperbolic Location Fingerprinting: A Calibration-Free Solution for Handling Differences in Signal Strength (concise contribution) , 2008, 2008 Sixth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom).

[84]  Hua Lu,et al.  Graph Model Based Indoor Tracking , 2009, 2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware.

[85]  Mun Choon Chan,et al.  PiLoc: A self-calibrating participatory indoor localization system , 2014, IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks.

[86]  Allison Kealy,et al.  Intelligent location models for next generation location-based services , 2007, J. Locat. Based Serv..

[87]  Lei Yu,et al.  Comparison of Hybrid Localization Schemes using RSSI, TOA, and TDOA , 2011, EW.

[88]  Edward Y. Chang,et al.  XINS: the anatomy of an indoor positioning and navigation architecture , 2011, MLBS '11.

[89]  Sauro Longhi,et al.  Development and experimental validation of an adaptive extended Kalman filter for the localization of mobile robots , 1999, IEEE Trans. Robotics Autom..

[90]  Robert B. Noland,et al.  Current map-matching algorithms for transport applications: State-of-the art and future research directions , 2007 .

[91]  Eckehard Steinbach,et al.  Graph-based data fusion of pedometer and WiFi measurements for mobile indoor positioning , 2014, UbiComp.

[92]  Fusion of Wi-Fi and bluetooth for indoor localization , 2011, MLBS '11.

[93]  Ruizhi Chen,et al.  A Hybrid Smartphone Indoor Positioning Solution for Mobile LBS , 2012, Sensors.

[94]  Hojung Cha,et al.  Unsupervised Construction of an Indoor Floor Plan Using a Smartphone , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[95]  Cyril Ray,et al.  Knowledge Representation and Management in Indoor Mobile Environments , 2013, ERCIM News.

[96]  Kegen Yu,et al.  Ground-Based Wireless Positioning , 2009 .

[97]  Moustafa Youssef,et al.  Nuzzer: A Large-Scale Device-Free Passive Localization System for Wireless Environments , 2009, IEEE Transactions on Mobile Computing.

[98]  Eszter Udvary,et al.  VLC-Based Indoor Localization , 2016 .

[99]  Isaac Skog,et al.  Cooperative localization by dual foot-mounted inertial sensors and inter-agent ranging , 2013, EURASIP J. Adv. Signal Process..

[100]  François Chan,et al.  Hybrid localization of an emitter by combining angle-of-arrival and received signal strength measurements , 2014, 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE).

[101]  Frank Dürr,et al.  On location models for ubiquitous computing , 2004, Personal and Ubiquitous Computing.

[102]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[103]  Seth Teller,et al.  Motion Compatibility for Indoor Localization , 2014 .

[104]  Ning An,et al.  SCPL: indoor device-free multi-subject counting and localization using radio signal strength , 2013, IPSN.

[105]  Alessio De Angelis,et al.  Indoor Positioning by Ultra-Wideband Radio Aided Inertial Navigation , 2009 .

[106]  Mani B. Srivastava,et al.  On the Error Characteristics of Multihop Node Localization in Ad-Hoc Sensor Networks , 2003, IPSN.

[107]  Anshul Rai,et al.  Zee: zero-effort crowdsourcing for indoor localization , 2012, Mobicom '12.

[108]  John L. Crassidis Sigma-point Kalman filtering for integrated GPS and inertial navigation , 2006 .

[109]  E. Martin Multimode radio fingerprinting for localization , 2011, 2011 IEEE Radio and Wireless Symposium.

[110]  Gaetano Borriello,et al.  Location Systems for Ubiquitous Computing , 2001, Computer.

[111]  Yong Cheol Kim,et al.  Hidden Markov Model Based Tracking of a Proxy RP in Wi-Fi Localization , 2011, 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring).

[112]  Cyril Ray,et al.  Spatial models for context-aware indoor navigation systems: A survey , 2012, J. Spatial Inf. Sci..

[113]  Thorsten Vaupel,et al.  A Hidden Markov Model for pedestrian navigation , 2010, 2010 7th Workshop on Positioning, Navigation and Communication.

[114]  Hwee-Xian Tan,et al.  CIMLoc: A crowdsourcing indoor digital map construction system for localization , 2014, 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP).

[115]  Fredrik Gustafsson,et al.  Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..

[116]  James Caffery,et al.  Hybrid TOA/AOA techniques for mobile location in non-line-of-sight environments , 2004, 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No.04TH8733).

[117]  Weihua Zhuang,et al.  Hybrid TDOA/AOA mobile user location for wideband CDMA cellular systems , 2002, IEEE Trans. Wirel. Commun..

[118]  Eyal de Lara,et al.  GSM indoor localization , 2007, Pervasive Mob. Comput..

[119]  Juan D. Tardós,et al.  Data association in stochastic mapping using the joint compatibility test , 2001, IEEE Trans. Robotics Autom..

[120]  Jianxin Wu,et al.  Poster abstract: MaWi: A hybrid Magnetic and Wi-Fi system for scalable indoor localization , 2014, IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks.

[121]  Isaac Skog,et al.  Foot-Mounted Inertial Navigation and Cooperative Sensor Fusion for Indoor Positioning , 2010 .

[122]  Robert Harle,et al.  A Survey of Indoor Inertial Positioning Systems for Pedestrians , 2013, IEEE Communications Surveys & Tutorials.

[123]  Zafer Sahinoglu,et al.  The Cramer-Rao bounds of hybrid TOA/RSS and TDOA/RSS location estimation schemes , 2004, IEEE Communications Letters.

[124]  Feng Zhao,et al.  A reliable and accurate indoor localization method using phone inertial sensors , 2012, UbiComp.

[125]  Mehul Motani,et al.  A Robust Indoor Pedestrian Tracking System with Sparse Infrastructure Support , 2013, IEEE Transactions on Mobile Computing.

[126]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[127]  Ravi Jain,et al.  Error characteristics and calibration-free techniques for wireless LAN-based location estimation , 2004, MobiWac '04.

[128]  Swarun Kumar,et al.  Accurate indoor localization with zero start-up cost , 2014, MobiCom.

[129]  Y. Jay Guo,et al.  GDOP Analysis for Positioning System Design , 2009, IEEE Transactions on Vehicular Technology.

[130]  François Marx,et al.  Advanced Integration of WiFi and Inertial Navigation Systems for Indoor Mobile Positioning , 2006, EURASIP J. Adv. Signal Process..

[131]  Rudolph van der Merwe,et al.  The square-root unscented Kalman filter for state and parameter-estimation , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[132]  Hugh F. Durrant-Whyte,et al.  Simultaneous map building and localization for an autonomous mobile robot , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[133]  W. Burgard,et al.  Markov Localization for Mobile Robots in Dynamic Environments , 1999, J. Artif. Intell. Res..

[134]  Guobin Shen,et al.  BeepBeep: a high accuracy acoustic ranging system using COTS mobile devices , 2007, SenSys '07.

[135]  Moustafa Youssef,et al.  CheckInside: a fine-grained indoor location-based social network , 2014, UbiComp.

[136]  Moe Z. Win,et al.  Cooperative Localization in Wireless Networks , 2009, Proceedings of the IEEE.

[137]  Martin Klepal,et al.  A Backtracking Particle Filter for fusing building plans with PDR displacement estimates , 2008, 2008 5th Workshop on Positioning, Navigation and Communication.

[138]  Robert Harle,et al.  Pedestrian localisation for indoor environments , 2008, UbiComp.

[139]  Romit Roy Choudhury,et al.  SurroundSense: mobile phone localization via ambience fingerprinting , 2009, MobiCom '09.

[140]  Neeti Wagle,et al.  A Particle Filter Approach to WiFi Target Localization , 2010 .

[141]  Gaetano Borriello,et al.  The location stack , 2004 .