Representation of GaP formation by a reduced order surface kinetics model using p-polarized reflectance measurements

This contribution presents results on the parameter estimation of rate constants and optical response factors in a reduced order surface kinetics (ROSK) model, which has been developed to describe the decomposition kinetics of the organometallic precursors involved and their incorporation into the film deposition. As a real-time characterization technique, we applied p-polarized reflectance spectroscopy (PRS) during low temperature growth of epitaxial GaP heterostructures on Si(001) substrates by pulsed chemical beam epitaxy. The high surface sensitivity of PRS allows us to follow alterations in the composition and thickness of the surface reaction layer as they are encountered during periodic precursor supply. Linkage of the PRS response to the ROSK model provides the base for the parameter estimation of the reduced order surface kinetics model, giving insights into the organometallic precursor decomposition and growth kinetics.

[1]  K. Bachmann,et al.  Heteroepitaxy of lattice-matched compound semiconductors on silicon , 1995 .

[2]  K. Bachmann,et al.  Real-time monitoring of heteroepitaxial Ga/sub x/In/sub 1-x/P growth on Si(001) by P-Polarised reflectance , 1997, Conference Proceedings. 1997 International Conference on Indium Phosphide and Related Materials.

[3]  C. Kelley,et al.  The Simplex Gradient and Noisy Optimization Problems , 1998 .

[4]  C. T. Kelley,et al.  Detection and Remediation of Stagnation in the Nelder--Mead Algorithm Using a Sufficient Decrease Condition , 1999, SIAM J. Optim..

[5]  K. Bachmann,et al.  Real-time monitoring of surface processes by p-polarized reflectance , 1997 .

[6]  K. Bachmann,et al.  Heteroepitaxy of GaP on Si(100) , 1996 .

[7]  S. C. Beeler,et al.  Real-time monitoring of steady-state pulsed chemical beam epitaxy by p-polarized reflectance , 1998 .

[8]  K. Bachmann,et al.  Real-time Characterization of the Optical Properties of an ultra-thin Surface Reaction Layer during Growth , 1996 .

[9]  K. Bachmann,et al.  Migration-enhanced pulsed chemical beam epitaxy of GaP on Si(001) , 1995 .

[10]  O. S. Heavens,et al.  Optical Properties of Thin Solid Films , 2011 .

[11]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[12]  G. J. Davies,et al.  Surface studies of the thermal decomposition of triethylgallium on GaAs (100) , 1990 .

[13]  L. Ward,et al.  The Optical Constants of Bulk Materials and Films , 1988 .

[14]  K. Bachmann,et al.  Real-Time Monitoring of Epitaxial Processes by Parallel-Polarized Reflectance Spectroscopy , 1995 .

[15]  S. C. Beeler,et al.  Molecular layer epitaxy by real-time optical process monitoring , 1997 .

[16]  K. Bachmann,et al.  Real-time optical monitoring of epitaxial growth: Pulsed chemical beam epitaxy of GaP and InP homoepitaxy and heteroepitaxy on Si , 1995 .

[17]  K. Bachmann,et al.  P-polarized reflectance spectroscopy: A highly sensitive real-time monitoring technique to study surface kinetics under steady state epitaxial deposition conditions , 1996 .

[18]  I. Povey,et al.  Gas phase monitoring of reactions under InP MOVPE growth conditions for the decomposition of tertiarybutyl phosphine and related precursors , 1992 .

[19]  K. Bachmann,et al.  Real-time optical monitoring of heteroepitaxial growth processes on Si under pulsed chemical beam epitaxy conditions , 1996 .

[20]  Study of tertiarybutylphosphine pyrolysis using a deuterated source , 1989 .

[21]  D. Aspnes,et al.  Optical approaches for controlling epitaxial growth , 1998 .