Synthesis of Crystalline/Amorphous Core/Shell MoO3 Composites through a Controlled Dehydration Route and Their Enhanced Ethanol Sensing Properties

Considering the specific surface area, flexible structures, high porosity, and a homogeneous and isotropic nature down to the atomic scale possessed by the amorphous nanostructure, an interesting controlled dehydration route has been developed to synthesize the crystalline/amorphous core/shell (C/A-C/S) MoO3 nanocomposite, in which macroisopolyanion [Mo36O112(H2O)16]8– ({Mo36}) was successfully assembled into a one-dimensional connection and underwent a deficient crystallization induced by the prospective infiltrative dehydration process. The as-obtained MoO3 samples’ affirmative composition and composite structure have been further demonstrated by the XRD, TEM, HRTEM, and Raman spectra measurements. As a result of this special C/A-C/S structure, the MoO3 composite exhibited high selectivity and a higher sensor response, at a lower working temperature (180 °C) to ethanol gas compared with other 1D MoO3 micro/nanostructures reported previously.

[1]  Matteo Ferroni,et al.  MoO3-based sputtered thin films for fast NO2 detection , 1998 .

[2]  Jianguo Guan,et al.  Solvent-mediated synthesis of magnetic Fe2O3 chestnut-like amorphous-core/γ-phase-shell hierarchical nanostructures with strong As(V) removal capability , 2011 .

[3]  C. Peden,et al.  Tomography and High-Resolution Electron Microscopy Study of Surfaces and Porosity in a Plate-Like γ-Al2O3 , 2013 .

[4]  V. Fomichev,et al.  Structural features and spectroscopic and energy characteristics of alkali metal molybdates and tungstates , 1992 .

[5]  E. Obermeier,et al.  Sputtered molybdenum oxide thin films for NH3 detection , 1996 .

[6]  N. Xu,et al.  Synthesis and field-emission properties of aligned MoO3 nanowires , 2003 .

[7]  M. Senna,et al.  Mechanochemical dehydration and amorphization of hydroxides of Ca, Mg and Al on grinding with and without SiO2 , 1993 .

[8]  Yujin Chen,et al.  Synthesis of Mesoporous MoO3 Nanoribbons through a Multi‐molybdate Coordination‐Polymer‐Precursor Route , 2012 .

[9]  Yujin Chen,et al.  Reduced-temperature ethanol sensing characteristics of flower-like ZnO nanorods synthesized by a sonochemical method , 2006, Nanotechnology.

[10]  Robert Vajtai,et al.  Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Y. J. Kim,et al.  Controlled Synthesis of Abundantly Branched, Hierarchical Nanotrees by Electron Irradiation of Polymers , 2006 .

[12]  L. Nagahara,et al.  Study of the Photochromic Properties of Amorphous MoO3 Films Using Raman Microscopy , 1995 .

[13]  S. Fan,et al.  Effect of defects on optical phonon Raman spectra in SiC nanorods , 1999 .

[14]  P. Gouma,et al.  Comparison of sol–gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection , 2003 .

[15]  C. Rao,et al.  In2O3 nanowires, nanobouquets and nanotrees , 2004 .

[16]  Changwen Hu,et al.  Thermal oxidation synthesis hollow MoO3 microspheres and their applications in lithium storage and gas-sensing , 2013 .

[17]  Wojtek Wlodarski,et al.  Comparison of single and binary oxide MoO3, TiO2 and WO3 sol–gel gas sensors , 2002 .

[18]  Yoshio Bando,et al.  Synthesis, Raman scattering and defects of β-Ga2O3 nanorods , 2002 .

[19]  W. Cai,et al.  Silver hierarchical bowl-like array: synthesis, superhydrophobicity, and optical properties. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[20]  Weiyang Li,et al.  Vapor-transportation preparation and reversible lithium intercalation/deintercalation of alpha-MoO3 microrods. , 2006, The journal of physical chemistry. B.

[21]  X. Ren,et al.  Two {Mo36}-containing polymolybdates: Synthesis, crystal structures, and spectral characterizations , 2012 .

[22]  R. P. Tandon,et al.  MoO3-based sensor for NO, NO2 and CH4 detection , 2006 .

[23]  Zhong Lin Wang,et al.  Crystallographic Orientation-Aligned ZnO Nanorods Grown by a Tin Catalyst , 2003 .

[24]  K. Latham,et al.  Electrodeposited alpha- and beta-phase MoO3 films and investigation of their gasochromic properties , 2012 .

[25]  A. Briceño,et al.  A mesoporous hydrogen-bonded organic-inorganic framework bearing the isopolymolybdate [Mo36O112(OH2)16]8-. , 2005, Chemical communications.

[26]  M. Strano,et al.  Enhanced Charge Carrier Mobility in Two‐Dimensional High Dielectric Molybdenum Oxide , 2013, Advanced materials.

[27]  F. Hahn,et al.  Template-controlled synthesis of a planar [16]ane-P2C(NHC)2 macrocycle. , 2010, Chemical communications.

[28]  C. Sanchez,et al.  Pyrolysis, crystallization, and sintering of mesostructured titania thin films assessed by in situ thermal ellipsometry. , 2008, Journal of the American Chemical Society.

[29]  Taihong Wang,et al.  Enhanced Optical and Sensing Properties of One-Step Synthesized Pt−ZnO Nanoflowers , 2010 .

[30]  C. Liu,et al.  Ultrasonic synthesis of MoO3 nanorods and their gas sensing properties , 2012 .

[31]  Xun Wang,et al.  Cluster-based self-assembly route toward MoO3 single-walled nanotubes. , 2010, Chemistry.

[32]  M. Schmal,et al.  Thermal Spreading of MoO 3 onto Silica Supports , 2000 .

[33]  Zaiping Guo,et al.  Carbon-coated MoO3 nanobelts as anode materials for lithium-ion batteries , 2010 .

[34]  Chunling Zhu,et al.  The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures , 2006 .

[35]  H. Meixner,et al.  Detection of reducing gases in air by β-Ga2O3 thin films using self-heated and externally (oven-) heated operation modes , 1996 .

[36]  E. Fortunato,et al.  High mobility amorphous/nanocrystalline indium zinc oxide deposited at room temperature , 2006 .

[37]  Ullrich Steiner,et al.  Hierarchical structure formation and pattern replication induced by an electric field , 2003, Nature materials.

[38]  Jing Sun,et al.  Single-crystalline MoO3 nanoplates: topochemical synthesis and enhanced ethanol-sensing performance , 2011 .

[39]  Yuan Zhang,et al.  Brush-Like Hierarchical ZnO Nanostructures: Synthesis, Photoluminescence and Gas Sensor Properties , 2009 .

[40]  S. Neeraj,et al.  Novel red phosphors for solid-state lighting: the system NaM(WO4)2−x(MoO4)x:Eu3+ (MGd, Y, Bi) , 2004 .

[41]  Jun Chen,et al.  Large‐Area Nanowire Arrays of Molybdenum and Molybdenum Oxides: Synthesis and Field Emission Properties , 2003 .

[42]  G. Sberveglieri,et al.  Gas sensing properties of MoO3 nanorods to CO and CH3OH , 2005 .

[43]  J. Haber,et al.  Oxygen in Catalysis on Transition Metal Oxides , 1979 .

[44]  F. Solzbacher,et al.  A new preparation method for sputtered MoO3 multilayers for the application in gas sensors , 2001 .

[45]  A. Demourgues,et al.  Nanostructured Al-based Fluoride-Oxide Materials with a Core-Shell Morphology , 2008 .

[46]  Z. Wang,et al.  Junctions and Networks of SnO Nanoribbons , 2002 .

[47]  X. Fang,et al.  Hierarchical Structure: Silicon Nanowires Standing on Silica Microwires , 2004 .

[48]  C. Louis,et al.  Photoluminescence Properties of Mo-MCM-41 Mesoporous Molecular Sieves and Their Photocatalytic Reactivity for the Decomposition of NOx. , 2000 .

[49]  Jos L. Campbell,et al.  In Situ Raman Spectroscopy of H2 Gas Interaction with Layered MoO3 , 2011 .

[50]  J. Gabrusenoks,et al.  Structure of Tungstic Acids and Amorphous and Crystalline WO3 Thin Films , 1982 .

[51]  Haoshen Zhou,et al.  Sonochemical synthesis of amorphous manganese oxide coated on carbon and application to high power battery , 2004 .

[52]  Kang L. Wang,et al.  Synthesis of nanometre-thick MoO3 sheets. , 2010, Nanoscale.

[53]  Anne C. Dillon,et al.  Reversible Lithium‐Ion Insertion in Molybdenum Oxide Nanoparticles , 2008 .

[54]  R. Frost,et al.  Raman spectroscopic study of the arsenite mineral vajdakite [(Mo6+O2)2(H2O)2As3+2O5]·H2O , 2010 .

[55]  D. Kang,et al.  MoO3 and Cu0.33MoO3 nanorods for unprecedented UV/Visible light photocatalysis. , 2010, Chemical communications.

[56]  D. Samsonenko,et al.  One‐, Two‐, and Three‐Dimensional Coordination Polymers Built from Large Mo36‐Polyoxometalate Anionic Units and Lanthanide Cations , 2005 .

[57]  Zhifeng Ren,et al.  Hierarchical ZnO Nanostructures , 2002 .

[58]  Xun Wang,et al.  Hierarchical MnO2/SnO2 heterostructures for a novel free-standing ternary thermite membrane. , 2013, Inorganic chemistry.

[59]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[60]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[61]  Delphic Chen,et al.  Post-deposition annealing control of phase and texture for the sputtered MoO3 films , 2011 .

[62]  Shui-Tong Lee,et al.  Oxide-assisted growth and characterization of Ge/SiOx nanocables , 2003 .

[63]  T. Gnanasekaran,et al.  Electrical conductivity and gas sensing properties of MoO31 , 2004 .

[64]  Seong‐Hyeon Hong,et al.  Gas sensing properties of MoO3 nanoparticles synthesized by solvothermal method , 2010 .

[65]  N Bernet,et al.  Microbiology and performance of a methanogenic biofilm reactor during the start‐up period , 2009, Journal of applied microbiology.

[66]  T. Ressler,et al.  Bulk structural investigation of the reduction of MoO3 with propene and the oxidation of MoO2 with oxygen , 2002 .

[67]  K. Eda,et al.  Crystal Engineering with [Mo36O112(H2O)16]8− Anion as Nanosized Building Block , 2005 .

[68]  Sehee Lee,et al.  Optimization of MoO3 nanoparticles as negative-electrode material in high-energy lithium ion batteries , 2010 .

[69]  G. Rohrer,et al.  The Protonation of MoO3during the Partial Oxidation of Alcohols , 1998 .

[70]  S. Dorozhkin Amorphous Calcium Orthophosphates: Nature, Chemistry and Biomedical Applications , 2012 .

[71]  Shui-Tong Lee,et al.  Thermal Reduction Route to the Fabrication of Coaxial Zn/ZnO Nanocables and ZnO Nanotubes , 2003 .

[72]  Anne C. Dillon,et al.  Layered vanadium and molybdenum oxides: batteries and electrochromics , 2009 .

[73]  M. Witko,et al.  Quantum-chemistry and catalysis in oxidation of hydrocarbons , 1981 .

[74]  T. Hufnagel,et al.  Mechanical behavior of amorphous alloys , 2007 .

[75]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[76]  V. Pillai,et al.  Enhanced ethanol sensing response from nanostructured MoO3:ZnO thin films and their mechanism of sensing , 2013 .

[77]  T. Tran-thi,et al.  Catalytic photo-oxidation of cyclohexene by aqueous uranyl–polymolybdate(VI) systems , 1988 .

[78]  Yujin Chen,et al.  One-pot hydrothermal synthesis of heterostructured ZnO/ZnS nanorod arrays with high ethanol-sensing properties. , 2012, Chemistry.

[79]  John Wang,et al.  Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. , 2010, Nature materials.

[80]  M. Terrones,et al.  Selective Co-catalysed growth of novel MgO fishbone fractal nanostructures , 2001 .

[81]  Joachim Goschnick,et al.  A gradient microarray electronic nose based on percolating SnO(2) nanowire sensing elements. , 2007, Nano letters.

[82]  V. Pillai,et al.  Hydrogen and ethanol sensing properties of molybdenum oxide nanorods based thin films: Effect of electrode metallization and humid ambience , 2013 .

[83]  Wojtek Wlodarski,et al.  Gas sensing properties of thermally evaporated lamellar MoO3 , 2010 .