Extension of the Genkin and Mednis treatment for dynamic polarizabilities and hyperpolarizabilities of infinite periodic systems. I. Coupled perturbed Hartree–Fock theory

The uncoupled theory of Genkin and Mednis [Sov. Phys. JETP 27, 609 (1968)] for the nonlinear optical properties of infinite periodic systems has been extended to yield a fully analytical coupled perturbed Hartree–Fock treatment. Similarities and differences from other approaches to the same problem are analyzed. Future addition of electron correlation and vibrational contributions is discussed.

[1]  P. Jørgensen,et al.  Polarization propagator methods in atomic and molecular calculations , 1984 .

[2]  David J. Williams Nonlinear Optical Properties of Organic Materials V , 1993 .

[3]  Ab initio and semi-empirical studies of the static polarizability and the second hyperpolarizability of diamond: finite Td symmetry models from CH4 to C281H172 , 2000 .

[4]  P. Otto,et al.  Response to “Comment on ‘Calculation of ab initio dynamic hyperpolarizabilities of polymers’ ” [J. Chem. Phys. 112, 1616 (2000)] , 2000 .

[5]  D. M. Bishop,et al.  A simple method for determining approximate static and dynamic vibrational hyperpolarizabilities , 1995 .

[6]  P. Otto,et al.  Correlation corrected band structures of quasi 1D and 2D periodic systems and level distributions of disordered chains; new method with correlation for dynamic nonliner optical properties of periodic polymers , 1993 .

[7]  Benoît Champagne,et al.  Electric field dependence of the exchange-correlation potential in molecular chains , 1999 .

[8]  B. Champagne,et al.  Long-range effects in optimizing the geometry of stereoregular polymers. I. Formalism , 1999 .

[9]  R. E. Moss,et al.  Advanced Molecular Quantum Mechanics , 1973 .

[10]  B. Champagne,et al.  Bond length alternation effects on the static electronic polarizability and second hyperpolarizability of polyacetylene chains , 1999 .

[11]  P. Argyres,et al.  Stark ladders and Zener tunnelling , 1990 .

[12]  Denis Jacquemin,et al.  Assessment of Conventional Density Functional Schemes for Computing the Dipole Moment and (Hyper)polarizabilities of Push−Pull π-Conjugated Systems† , 2000 .

[13]  P. Otto,et al.  Calculation of ab initio dynamic hyperpolarizabilities of polymers , 1999 .

[14]  J. G. Fripiat,et al.  Ab initio investigation of the static polarizability of planar and twisted infinite polythiophene chains , 1994 .

[15]  D. H. Mosley,et al.  Ab initio coupled and uncoupled Hartree–Fock calculations of the polarizabilities of finite and infinite polyacetylene chains , 1993 .

[16]  David P. Shelton,et al.  Problems in the comparison of theoretical and experimental hyperpolarizabilities , 1992 .

[17]  B. Champagne,et al.  Vibrational versus electronic first hyperpolarizabilities of π-conjugated organic molecules: an ab initio Hartree Fock investigation upon the effects of the nature of the linker , 1999 .

[18]  C. Flytzanis,et al.  Nonlinear optical properties of one-dimensional semiconductors and conjugated polymers , 1978 .

[19]  R. Peierls,et al.  Quantum theory of solids , 1956 .

[20]  B. Champagne,et al.  Major intermolecular effects on nonlinear electrical response in a hexatriene model of solid state polyacetylene , 1999 .

[21]  Otto Calculation of the polarizability and hyperpolarizabilities of periodic quasi-one-dimensional systems. , 1992, Physical review. B, Condensed matter.

[22]  J. Olsen,et al.  Linear and nonlinear response functions for an exact state and for an MCSCF state , 1985 .

[23]  J. Frenkel,et al.  Wave mechanics: Advanced general theory , 1934 .

[24]  Towards the Calculations of Polarizabilities of Stereoregular Polymers , 1999 .

[25]  S. Karna,et al.  Frequency dependent nonlinear optical properties of molecules: Formulation and implementation in the HONDO program , 1991 .

[26]  G. Agrawal,et al.  Optical properties of one-dimensional semiconductors and conjugated polymers , 1977 .

[27]  P. Otto,et al.  Calculation of static vibrational polarizabilities of polymers: Poly(HF) in two configurations , 1999 .

[28]  Rodney J. Bartlett,et al.  Second‐order many‐body perturbation‐theory calculations in extended systems , 1996 .

[29]  B. Champagne,et al.  Model calculations of polarizabilities of polyene chains: Oligomers and infinite polymers , 1990 .

[30]  Benoît Champagne,et al.  Nonlinear optical properties of quasilinear conjugated oligomers, polymers and organic molecules , 1997 .

[31]  Robert Karplus,et al.  Hall Effect in Ferromagnetics , 1954 .

[32]  Hideo Sekino,et al.  Frequency dependent nonlinear optical properties of molecules , 1986 .

[33]  Benoît Champagne,et al.  Assessment of Conventional Density Functional Schemes for Computing the Polarizabilities and Hyperpolarizabilities of Conjugated Oligomers: An Ab Initio Investigation of Polyacetylene Chains , 1998 .

[34]  B. A. Hess,et al.  TDMP2 calculation of dynamic multipole polarizabilities and dispersion coefficients of the triplebonded molecules CO, N2, CN−, and NO+ , 1996 .

[35]  C. Hättig,et al.  Correlated frequency-dependent polarizabilities and dispersion coefficients in the time-dependent second-order Møller-Plesset approximation , 1995 .

[36]  R. Bartlett Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry , 1989 .

[37]  R. Bartlett Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules , 1981 .